\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management

Abstract / Introduction Related Papers Cited by
  • This paper presents a new mathematical model for integrating the virtual dynamic cellular manufacturing system into supply chain management with an extensive coverage of important manufacturing features. The considered model regards multi-plants and facility locations, multi-market allocation, multi-period planning horizons with demand and part-mix variation, machine and labor time-capacity, labor assignment, training and purchasing or selling of new machines for an increased level of plant capacity. The main constraints are market demand satisfaction in each period, machine and labor availability, production volume for each plant and the amounts allocated to each market. To validate and verify the proposed model is explained in terms of an industrial case from a typical equipment manufacturer. Some of the hard constraints of the proposed model are relaxed in order to obtain a lower bound on the objective function value. In fact, the number of machines and workers allocated to each cell are restricted to yield feasible solutions and tight upper bounds on the objective values for medium size instances in a shorter time. The relaxed model yields tight lower bounds for medium instances in a reasonable computational time. Furthermore, a Benders decomposition is developed for solving the upper bounding model.
    Mathematics Subject Classification: Primary: 35C20, 35P20; Secondary: 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aalaei and H. Davoudpour, Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system, AIP Conf. Proc., 1499 (2012), 239-246.doi: 10.1063/1.4768994.

    [2]

    A. Aalaei and H. Davoudpour, Revised multi-choice goal programming for incorporated dynamic virtual cellular manufacturing into supply chain management: A case study, Engineering Applications of Artificial Intelligence, in press, (2015).doi: 10.1016/j.engappai.2015.04.005.

    [3]

    S. Ahkioon, A. A. Bulgak T. Bektas, Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration, European Journal of Operational Research, 192 (2009), 414-428.doi: 10.1016/j.ejor.2007.09.023.

    [4]

    J. Balakrishnan and C. H. Cheng, Dynamic cellular manufacturing under multi-period planning horizons, Journal of Manufacturing Technology Management, 16 (2005), 516-530.

    [5]

    J. F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, 4 (1962), 238-252.doi: 10.1007/BF01386316.

    [6]

    H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, Development of a new approach for deterministic supply chain network design, European Journal of Operational Research, 198 (2009), 121-128.

    [7]

    O. Çakιr, Benders decomposition applied to multi-commodity, multi-mode distribution planning, Expert Systems with Applications, 36 (2009), 8212-8217.

    [8]

    J. Chen and S. S. Heragu, Stepwise decomposition approaches for large scale cell formation problems, European Journal of Operational Research, 113 (1999), 64-79.doi: 10.1016/S0377-2217(97)00419-0.

    [9]

    A. J. Conejo, E. Castillo, R. Minguez and R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming, Engineering and Science Applications, Springer, Berlin, 2006.

    [10]

    F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems, International Journal of Production Economics, 103 (2006), 767-783.doi: 10.1016/j.ijpe.2005.10.008.

    [11]

    K. Dogan and M. Goetschalckx, A primal decomposition method for the integrated design of multi-period production-distribution systems, IIE Transactions, 31 (1999), 1027-1036.doi: 10.1080/07408179908969904.

    [12]

    S. S. Heragu, Group technology and cellular manufacturing, IEEE Transactions of Systems, Man, and Cybernetics, 24 (1994), 203-215.doi: 10.1109/21.281420.

    [13]

    S. S. Heragu and J. Chen, Optimal solution of cellular manufacturing system design: Benders' decomposition approach, European Journal of Operational Research, 107 (1998), 175-192.doi: 10.1016/S0377-2217(97)00256-7.

    [14]

    S. E. Kesen, M. D. Toksari, Z. Güngr and E. Güner, Analyzing the behaviors of virtual cells (VCs) and traditional manufacturing systems: Ant colony optimization (ACO)-based metamodels, Computers and Operations Research, 36 (2009), 2275-2285.doi: 10.1016/j.cor.2008.09.002.

    [15]

    H. Li and K. Womer, Optimizing the supply chain configuration for make-to-order manufacturing, European Journal of Operational Research, 221 (2012), 118-128.doi: 10.1016/j.ejor.2012.03.025.

    [16]

    I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment, Computers and Mathematics with Applications, 60 (2010), 1014-1025.doi: 10.1016/j.camwa.2010.03.044.

    [17]

    I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems, International Journal of Production Research, 49 (2011), 6517-6537.doi: 10.1080/00207543.2010.524902.

    [18]

    I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system, Journal of Manufacturing Systems, 31 (2012), 214-223.doi: 10.1016/j.jmsy.2011.07.007.

    [19]

    S. M. Mansouri, S. M. Moattar Husseini and S. T. Newman, A review of the modern approaches to multi-criteria cell design, International Journal of Production Research, 38 (2000), 1201-1218.doi: 10.1080/002075400189095.

    [20]

    M. T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management, A review, European Journal of Operational Research, 196 (2009), 401-412.doi: 10.1016/j.ejor.2008.05.007.

    [21]

    G. Nomden, J. Slomp and N. C. Suresh, Virtual manufacturing cells: A taxonomy of past research and identification of future research issues, International Journal of Flexible Manufacturing Systems, 17 (2005), 71-92.doi: 10.1007/s10696-006-8122-1.

    [22]

    H. Osman and K. Demirli, A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection, International Journal of Production Economics, 124 (2010), 97-105.doi: 10.1016/j.ijpe.2009.10.012.

    [23]

    P. P. Rao and R. P. Mohanty, Impact of cellular manufacturing on supply chain management: Exploration of interrelationships between design issues, International Journal of Manufacturing Technology and Management, 5 (2003), 507-520.doi: 10.1504/IJMTM.2003.003706.

    [24]

    M. Rheault, J. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment, Computers & Industrial Engineering, 29 (1995), 221-225.doi: 10.1016/0360-8352(95)00075-C.

    [25]

    L. K. Saxena and P. K. Jain, An integrated model of dynamic cellular manufacturing and supply chain system design, International Journal of Advance Manufacturing Technology, 62 (2012), 385-404.doi: 10.1007/s00170-011-3806-4.

    [26]

    J. Schaller, Incorporating cellular manufacturing into supply chain design, International Journal of Production Research, 46 (2008), 4925-4945.doi: 10.1080/00207540701348761.

    [27]

    D. Simchi-Levi, P. Kaminsky and R. Shankar, Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies, Irwin McGraw- Hill, 2007.

    [28]

    J. Slomp, B. V. Chowdary and N. C. Suresh, Design of virtual manufacturing cells: A mathematical programming approach, Robotics and Computer Integrated Manufacturing, 21 (2005), 273-288.doi: 10.1016/j.rcim.2004.11.001.

    [29]

    S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design, European Journal of Operational Research, 141 (2002), 544-558.doi: 10.1016/S0377-2217(01)00277-6.

    [30]

    H. Uster and H. Agrahari, A Benders decomposition approach for a distribution network design problem with consolidation and capacity considerations, Operational Research Letters, 39 (2011), 138-143.doi: 10.1016/j.orl.2011.02.003.

    [31]

    U. Wemmerlov and N. L. Hyer, Cellular manufacturing in the U. S. industry: A survey of users, International Journal of Production Research, 27 (1989), 1511-1530.doi: 10.1080/00207548908942637.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return