# American Institute of Mathematical Sciences

April  2017, 13(2): 931-945. doi: 10.3934/jimo.2016054

## New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost

 1 School of Business, East China University of Science and Technology, Shanghai 200237, China 2 The Johns Hopkins Carey Business School, Baltimore, MD 21202, USA

* Corresponding author: Arnab Bisi

Received  December 2014 Revised  June 2016 Published  August 2016

Fund Project: The first author is supported in part by the humanities and social sciences foundation of Chinese Ministry of Education under grant 12YJA630162.

We study a stochastic inventory model with a fixed setup cost and zero order lead time. In a finite-horizon lost sales model, when demand has a Polya frequency distribution (P Fn), we show that there are no more than a pre-determined number of minima of the cost function. Consequently, depending on the relative cost of lost sales and inventory holding cost, there can be as few as one local minimum. These properties have structural implications for the optimal policies and cost functions. A necessary condition for the results to hold for the backordered model has been explained. We further conduct a numerical study to validate our structural results.

Citation: Yanyi Xu, Arnab Bisi, Maqbool Dada. New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost. Journal of Industrial & Management Optimization, 2017, 13 (2) : 931-945. doi: 10.3934/jimo.2016054
##### References:

show all references

##### References:
 Cost and Model Parameters $K$ = fixed setup cost $c$ = unit variable ordering cost $h$ = unit inventory holding cost $l$ = unit lost sales cost ($l > c$) $b$ = unit backorder cost $\alpha$ = discount factor ($0<\alpha\le 1$) $T$ = time horizon
 Cost and Model Parameters $K$ = fixed setup cost $c$ = unit variable ordering cost $h$ = unit inventory holding cost $l$ = unit lost sales cost ($l > c$) $b$ = unit backorder cost $\alpha$ = discount factor ($0<\alpha\le 1$) $T$ = time horizon
 Demand Information $\xi_t$ = the random observation of demand in period $t$, $t = 1, 2,\dots, T$ $f(\cdot)$= the probability density function (PDF) of demand in each period $F(\cdot)$= the cumulative distribution function (CDF) of demand in each period
 Demand Information $\xi_t$ = the random observation of demand in period $t$, $t = 1, 2,\dots, T$ $f(\cdot)$= the probability density function (PDF) of demand in each period $F(\cdot)$= the cumulative distribution function (CDF) of demand in each period
 Decision Variables $s_t$ = optimal reorder level in period $t$ $S_t$ = optimal order-up-to level in period $t$
 Decision Variables $s_t$ = optimal reorder level in period $t$ $S_t$ = optimal order-up-to level in period $t$
 Cost Functions $L(\cdot)$ = one period inventory holding and shortage penalty cost function $V_t(x)$ = total minimal expected cost from period $t$ onwards ($t-1,\dots, 2, 1$), given that the on-hand inventory at the beginning of period $t$ is $x$ $G_t(y)$ = total expected cost from period t onwards after inventory level is increased to $y$
 Cost Functions $L(\cdot)$ = one period inventory holding and shortage penalty cost function $V_t(x)$ = total minimal expected cost from period $t$ onwards ($t-1,\dots, 2, 1$), given that the on-hand inventory at the beginning of period $t$ is $x$ $G_t(y)$ = total expected cost from period t onwards after inventory level is increased to $y$
 Other Useful Functions $\delta(z) = \left\{ \begin{array}{lc} 1&\textrm{if } z > 0 \\ 0& \textrm{if } z = 0 \end{array} \right.$, the indicator function for ordering decisions $x^+$ = $\max\{ x, 0 \}$
 Other Useful Functions $\delta(z) = \left\{ \begin{array}{lc} 1&\textrm{if } z > 0 \\ 0& \textrm{if } z = 0 \end{array} \right.$, the indicator function for ordering decisions $x^+$ = $\max\{ x, 0 \}$
Optimal Solutions for the Case with Unit Lost Sales Cost l = 2
 $K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$ 0.1 1 1.401973349 2.045088007 0.643114721 2.892765731 2 2.279867486 3.144352495 0.845991005 5.161645538 3 2.298361490 3.453500000 1.155138510 7.213139600 4 2.284635504 3.447230000 1.162594496 9.062221220 5 2.287417275 3.449250000 1.161832725 10.725835800 0.5 1 0.666145602 2.045088007 1.478942404 2.892765731 2 1.631133899 3.434334720 1.803200821 5.280907719 3 1.589211420 4.215151800 2.632884666 7.499670690 4 1.522671338 4.399540000 2.876868662 9.526311140 5 1.541934791 4.351150000 2.809215209 11.341494260 1 1 0.107558637 2.045088007 1.937529370 2.892765731 2 1.245066678 3.623702424 2.378635746 5.361056167 3 1.242995200 4.699700000 3.456704800 7.499670690 4 1.118285145 5.263110000 4.144824855 9.873385400 5 1.109158173 5.243850000 4.134691827 11.838495150
 $K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$ 0.1 1 1.401973349 2.045088007 0.643114721 2.892765731 2 2.279867486 3.144352495 0.845991005 5.161645538 3 2.298361490 3.453500000 1.155138510 7.213139600 4 2.284635504 3.447230000 1.162594496 9.062221220 5 2.287417275 3.449250000 1.161832725 10.725835800 0.5 1 0.666145602 2.045088007 1.478942404 2.892765731 2 1.631133899 3.434334720 1.803200821 5.280907719 3 1.589211420 4.215151800 2.632884666 7.499670690 4 1.522671338 4.399540000 2.876868662 9.526311140 5 1.541934791 4.351150000 2.809215209 11.341494260 1 1 0.107558637 2.045088007 1.937529370 2.892765731 2 1.245066678 3.623702424 2.378635746 5.361056167 3 1.242995200 4.699700000 3.456704800 7.499670690 4 1.118285145 5.263110000 4.144824855 9.873385400 5 1.109158173 5.243850000 4.134691827 11.838495150
Optimal Solutions for the Case with Unit Lost Sales Cost l = 10
 $K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$ 0.1 1 3.810323346 4.380527192 0.570203846 4.318148680 2 4.797805509 5.568997000 0.771191491 6.934754800 3 4.864161753 5.928412500 1.064250747 9.291513170 4 4.844958018 5.924312000 1.079353982 11.416826560 5 4.848185556 5.926906000 1.078720444 13.328890410 5 1 1.477580090 4.380527192 2.902947102 4.318148680 2 2.835586519 6.555841000 3.720254481 7.428294760 3 3.147720304 8.310725000 5.163004696 10.437563500 4 3.019171696 9.780020000 6.760848304 13.352972400 5 2.912465707 10.980260000 8.067794293 16.156118600 10 1 0.670234159 4.380527192 3.710293006 4.318148680 2 2.211120742 6.755695000 4.544571258 7.538793306 3 2.723958450 8.738920000 6.014961550 10.701657500 4 2.637428687 10.476020000 7.838591313 13.811397880 5 2.530633770 12.015940000 9.485306230 16.854614980 15 1 0.075836309 4.380527192 4.304690883 4.318148680 2 1.775579517 6.851150000 5.075570483 7.592848600 3 2.417147303 8.949725000 6.532577697 10.836869060 4 2.382954891 10.818600000 8.435645109 14.050696010 5 2.282913956 12.513120000 10.230206040 17.220767220
 $K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$ 0.1 1 3.810323346 4.380527192 0.570203846 4.318148680 2 4.797805509 5.568997000 0.771191491 6.934754800 3 4.864161753 5.928412500 1.064250747 9.291513170 4 4.844958018 5.924312000 1.079353982 11.416826560 5 4.848185556 5.926906000 1.078720444 13.328890410 5 1 1.477580090 4.380527192 2.902947102 4.318148680 2 2.835586519 6.555841000 3.720254481 7.428294760 3 3.147720304 8.310725000 5.163004696 10.437563500 4 3.019171696 9.780020000 6.760848304 13.352972400 5 2.912465707 10.980260000 8.067794293 16.156118600 10 1 0.670234159 4.380527192 3.710293006 4.318148680 2 2.211120742 6.755695000 4.544571258 7.538793306 3 2.723958450 8.738920000 6.014961550 10.701657500 4 2.637428687 10.476020000 7.838591313 13.811397880 5 2.530633770 12.015940000 9.485306230 16.854614980 15 1 0.075836309 4.380527192 4.304690883 4.318148680 2 1.775579517 6.851150000 5.075570483 7.592848600 3 2.417147303 8.949725000 6.532577697 10.836869060 4 2.382954891 10.818600000 8.435645109 14.050696010 5 2.282913956 12.513120000 10.230206040 17.220767220
 [1] Shalosh B. Ekhad and Doron Zeilberger. Proof of Conway's lost cosmological theorem. Electronic Research Announcements, 1997, 3: 78-82. [2] Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Optimality of (s, S) policies with nonlinear processes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 161-185. doi: 10.3934/dcdsb.2017008 [3] Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167 [4] Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609 [5] Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial & Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13 [6] Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $(s, S)$ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1415-1433. doi: 10.3934/jimo.2019009 [7] Motohiro Sobajima. On the threshold for Kato's selfadjointness problem and its $L^p$-generalization. Evolution Equations & Control Theory, 2014, 3 (4) : 699-711. doi: 10.3934/eect.2014.3.699 [8] Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793 [9] Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 [10] Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175 [11] Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593 [12] Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020 [13] Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 [14] Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 [15] Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004 [16] Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607 [17] Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013 [18] Drossos Gintides, Mourad Sini. Identification of obstacles using only the scattered P-waves or the scattered S-waves. Inverse Problems & Imaging, 2012, 6 (1) : 39-55. doi: 10.3934/ipi.2012.6.39 [19] C*-actions on C^3 are linearizable. S. Kaliman, M. Koras, L. Makar-Limanov and P. Russell. Electronic Research Announcements, 1997, 3: 63-71. [20] Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

2018 Impact Factor: 1.025