• Previous Article
    Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times
  • JIMO Home
  • This Issue
  • Next Article
    A superlinearly convergent hybrid algorithm for solving nonlinear programming
April  2017, 13(2): 995-1007. doi: 10.3934/jimo.2016058

Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

2. 

Center of Financial Engineering, Nanjing Audit University, Nanjing 211815, China

* Corresponding author

Received  December 2015 Revised  June 2016 Published  August 2016

We investigate the infinite-time ruin probability of a renewal risk model with exponential Lévy process investment and dependent claims and inter-arrival times. Assume that claims and corresponding inter-arrival times form a sequence of independent and identically distributed copies of a random pair $(X,T)$ with dependent components. When the product of the claims and the discount factors of the corresponding inter-arrival times are heavy tailed, we establish an asymptotic formula for the infinite-time ruin probability without any restriction on the dependence structure of $(X,T)$.

Citation: Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058
References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104. doi: 10.1080/03461230802700897. Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360. Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048. doi: 10.1017/S0021900200008603. Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98. doi: 10.1016/0304-4149(94)90113-9. Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004. Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384. doi: 10.1111/1467-9965.00121. Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44. doi: 10.1007/s00780-003-0105-4. Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87. doi: 10.1016/j.insmatheco.2014.04.001. Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313. doi: 10.1002/asmb.1925. Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224. doi: 10.1017/S0001867800003190. Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577. doi: 10.1016/j.insmatheco.2007.06.002. Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997.Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146. doi: 10.1017/S0001867800004559. Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023. doi: 10.1016/j.jmaa.2011.10.012. Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177. doi: 10.1016/j.spa.2005.09.002. Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999. Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394. doi: 10.1360/022004-16. Google Scholar

show all references

References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104. doi: 10.1080/03461230802700897. Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360. Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048. doi: 10.1017/S0021900200008603. Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98. doi: 10.1016/0304-4149(94)90113-9. Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004. Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384. doi: 10.1111/1467-9965.00121. Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44. doi: 10.1007/s00780-003-0105-4. Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87. doi: 10.1016/j.insmatheco.2014.04.001. Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313. doi: 10.1002/asmb.1925. Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224. doi: 10.1017/S0001867800003190. Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577. doi: 10.1016/j.insmatheco.2007.06.002. Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997.Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146. doi: 10.1017/S0001867800004559. Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023. doi: 10.1016/j.jmaa.2011.10.012. Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177. doi: 10.1016/j.spa.2005.09.002. Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999. Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394. doi: 10.1360/022004-16. Google Scholar

[1]

Yang Yang, Kam C. Yuen, Jun-Feng Liu. Asymptotics for ruin probabilities in Lévy-driven risk models with heavy-tailed claims. Journal of Industrial & Management Optimization, 2018, 14 (1) : 231-247. doi: 10.3934/jimo.2017044

[2]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[3]

Wouter Rogiest, Dieter Fiems, Koenraad Laevens, Herwig Bruneel. Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times. Journal of Industrial & Management Optimization, 2010, 6 (3) : 569-585. doi: 10.3934/jimo.2010.6.569

[4]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[5]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[6]

Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial & Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849

[7]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[8]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[9]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[10]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[11]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[12]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[13]

María Jesús Carro, Carlos Domingo-Salazar. The return times property for the tail on logarithm-type spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2065-2078. doi: 10.3934/dcds.2018084

[14]

Byeongchan Lee, Jonghun Yoon, Yang Woo Shin, Ganguk Hwang. Tail asymptotics of fluid queues in a distributed server system fed by a heavy-tailed ON-OFF flow. Journal of Industrial & Management Optimization, 2016, 12 (2) : 637-652. doi: 10.3934/jimo.2016.12.637

[15]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[16]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[17]

Meng Wu, Jiefeng Yang. The optimal exit of staged investment when consider the posterior probability. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1105-1123. doi: 10.3934/jimo.2016064

[18]

Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control & Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029

[19]

Mounir Balti, Ramzi May. Asymptotic for the perturbed heavy ball system with vanishing damping term. Evolution Equations & Control Theory, 2017, 6 (2) : 177-186. doi: 10.3934/eect.2017010

[20]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (31)
  • HTML views (273)
  • Cited by (0)

Other articles
by authors

[Back to Top]