January 2018, 14(1): 1-17. doi: 10.3934/jimo.2017034

The optimal cash holding models for stochastic cash management of continuous time

1. 

Dept. of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China

2. 

School of Economics and Management, Yancheng Institute of Technology, Yancheng 224056, China

3. 

Dept. of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China

4. 

Southampton Statistical Sciences Research Institute and School of Mathematical Sciences, University of Southampton, SO17 1BJ, UK

Received  March 2015 Revised  August 2016 Published  April 2017

In business, enterprises need to maintain stable cash flows to meet the demands for payments in order to reduce the probability of possible bankruptcy. In this paper, we propose the optimal cash holding models in terms of continuous time and managers' risk preference in the framework of stochastic control theory in the setting of cash balance accounting with the interval of a safe area for cash holdings. Formulas for the optimal cash holdings are analytically derived with a widely used family of power utility functions. Our models can be seen as an extension of Miller-Orr model to solve the cash holding problem of continuous time from the accounting perspective. Numerical examples are also provided to illustrate the feasibility of the developed optimal cashing holding models of continuous time.

Citation: Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034
References:
[1]

S. Baccarin, Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32. doi: 10.1007/s102030200001.

[2]

A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216.

[3]

A. Bar-IlanD. Perry and W. Stadje, A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033. doi: 10.1016/S0165-1889(03)00064-2.

[4]

A. Bar-Ilan and D. Lederman, International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178. doi: 10.1016/j.econlet.2007.03.001.

[5]

W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546.

[6]

A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362.

[7]

A. BensoussanA. Chutani and S. P. Sethi, Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429. doi: 10.1016/j.orl.2009.08.002.

[8]

F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730.

[9]

H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256.

[10]

H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626.

[11]

A. Dixit, A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673. doi: 10.1016/0165-1889(91)90037-2.

[12]

G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133.

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006. doi: 10. 1007/978-0-387-26045-7.

[14]

J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43.

[15]

J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514.

[16]

N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140.

[17]

W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857.

[18]

I. KaratzasJ. P. LehoczkyS.E. Shreve and G.L. Xu, Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730. doi: 10.1137/0329039.

[19]

M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252.

[20]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257.

[21]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X.

[22]

R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698.

[23]

M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435.

[24]

M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576.

[25]

D. Perry and W. Stadje, Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36. doi: 10.1016/S0167-6687(99)00037-2.

[26]

G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633.

[27]

N. SongW. K. ChingT. K. Siu and K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92. doi: 10.4208/eajam.070313.220413a.

[28]

J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247.

[29]

R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369.

show all references

References:
[1]

S. Baccarin, Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32. doi: 10.1007/s102030200001.

[2]

A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216.

[3]

A. Bar-IlanD. Perry and W. Stadje, A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033. doi: 10.1016/S0165-1889(03)00064-2.

[4]

A. Bar-Ilan and D. Lederman, International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178. doi: 10.1016/j.econlet.2007.03.001.

[5]

W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546.

[6]

A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362.

[7]

A. BensoussanA. Chutani and S. P. Sethi, Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429. doi: 10.1016/j.orl.2009.08.002.

[8]

F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730.

[9]

H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256.

[10]

H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626.

[11]

A. Dixit, A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673. doi: 10.1016/0165-1889(91)90037-2.

[12]

G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133.

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006. doi: 10. 1007/978-0-387-26045-7.

[14]

J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43.

[15]

J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514.

[16]

N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140.

[17]

W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857.

[18]

I. KaratzasJ. P. LehoczkyS.E. Shreve and G.L. Xu, Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730. doi: 10.1137/0329039.

[19]

M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252.

[20]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257.

[21]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X.

[22]

R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698.

[23]

M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435.

[24]

M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576.

[25]

D. Perry and W. Stadje, Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36. doi: 10.1016/S0167-6687(99)00037-2.

[26]

G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633.

[27]

N. SongW. K. ChingT. K. Siu and K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92. doi: 10.4208/eajam.070313.220413a.

[28]

J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247.

[29]

R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369.

Figure 1.  optimal cash holding model in case 1
Figure 2.  optimal cash holding model in case 2
Figure 3.  optimal allocation to cash for different p values
Table 1.  The daily average yield and variance
stock number daily average yield variance
A0.0003990.000437
B0.0004330.000687
C0.0004430.0019
D0.0004630.00055
stock number daily average yield variance
A0.0003990.000437
B0.0004330.000687
C0.0004430.0019
D0.0004630.00055
Table 2.  The optimal cash holdings in case 1: $X_t>H$
stock numberinvest ratio $ \lambda_{t}^{*} $ in (17)$(1-\lambda_{t}^{*})X_{t} $optimal cash holdings
A0.7568911944.8711944.871
B0.5423023661.5863661.586
C0.043797649.6847000
D0.8154141476.6851476.685
stock numberinvest ratio $ \lambda_{t}^{*} $ in (17)$(1-\lambda_{t}^{*})X_{t} $optimal cash holdings
A0.7568911944.8711944.871
B0.5423023661.5863661.586
C0.043797649.6847000
D0.8154141476.6851476.685
Table 3.  The optimal cash holdings in case 2: $X_t<L$
stock numberconversion ratio $ \mu_{t}^{*} $ in (23) $ \mu_{t}^{*}R_{t}+X_{t} $optimal cash holdings
A0.1244431944.87111944.8711
B0.3832884326.24584326.2458
C0.7706537890.01047000
D0.1637942306.90472306.9047
stock numberconversion ratio $ \mu_{t}^{*} $ in (23) $ \mu_{t}^{*}R_{t}+X_{t} $optimal cash holdings
A0.1244431944.87111944.8711
B0.3832884326.24584326.2458
C0.7706537890.01047000
D0.1637942306.90472306.9047
Table 4.  The optimal cash holdings with different p values
pinvest ratio $ \lambda_{t}^{*} $ in (17) $(1- \lambda_{t}^{*})X_{t} $optimal cash holdings
0.10.043797649.6847000
0.20.046727626.2627000
0.30.089117287.1567000
0.40.145626835.0166835
0.50.224756202.0196202
0.60.343445252.5235252
0.70.541253670.0313670
0.80.93687505.0471000
0.92.12374-8989.911000
pinvest ratio $ \lambda_{t}^{*} $ in (17) $(1- \lambda_{t}^{*})X_{t} $optimal cash holdings
0.10.043797649.6847000
0.20.046727626.2627000
0.30.089117287.1567000
0.40.145626835.0166835
0.50.224756202.0196202
0.60.343445252.5235252
0.70.541253670.0313670
0.80.93687505.0471000
0.92.12374-8989.911000
[1]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[2]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[3]

Luis F. Gordillo. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 511-521. doi: 10.3934/mbe.2014.11.511

[4]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[5]

Laura Caravenna. Regularity estimates for continuous solutions of α-convex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031

[6]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[7]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[8]

Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365

[9]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[10]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[11]

Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072

[12]

Dušan M. Stipanović, Christopher Valicka, Claire J. Tomlin, Thomas R. Bewley. Safe and reliable coverage control. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 31-48. doi: 10.3934/naco.2013.3.31

[13]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[14]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[15]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[16]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[17]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

[18]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[19]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[20]

Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (274)
  • HTML views (660)
  • Cited by (0)

Other articles
by authors

[Back to Top]