2018, 14(1): 19-33. doi: 10.3934/jimo.2017035

$\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method

1. 

School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621000, China

2. 

Mianyang Polytechnic, Mianyang 621000, China

* Corresponding author: Lin Du

Received  April 2015 Revised  February 2017 Published  April 2017

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant No. 61603312

In this paper, the $\mathcal{H}_∞$ filtering problem of switched nonlinear system with linear hyper plane switching surface is investigated. A state projection method is introduced to ensure the stability of error system and guarantee a prescribed disturbance attenuation level in the $\mathcal{H}_∞$ sense, by designing filter gains for each subsystem via solving a set of LMIs and formulating a state projection relation for filter state at switching instant. It is worthwhile to note that the state projection relation is deduced by both Lyapunov functions and the switching surface, which implies the state projection method is suitable for switched system with linear hyper plane switching surface. Finally, a numerical example is provided to illustrate our theoretic findings in this paper.

Citation: Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035
References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725. doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18. doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482. doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394. doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20. doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524. doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324. doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670. doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118. doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824. doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431. doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471. doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152. doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370. doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773. doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765. doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376. doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945. doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697. doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230. doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318. doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817.

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222. doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204. doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645. doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99. doi: 10.1109/37.898794.

show all references

References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725. doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18. doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482. doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394. doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20. doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524. doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324. doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670. doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118. doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824. doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431. doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471. doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152. doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370. doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773. doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765. doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376. doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945. doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697. doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230. doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318. doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817.

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222. doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204. doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645. doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99. doi: 10.1109/37.898794.

Figure 1.  Illustration of state projection approach
Figure 2.  Illustration of projection of filter state
Figure 3.  State response of $x_1 (-)$ and $x_2 (\cdots)$
Figure 4.  State response of $\hat x_1 (-)$ and $\hat x_2 (\cdots)$
Figure 5.  Response of $z (-)$ and $\hat z (\cdots)$
Figure 6.  Response of $\tilde z = z-\hat z$
[1]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of \begin{document}$n\times n$\end{document} \begin{document}$p$\end{document}-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[2]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global \begin{document} $\mathbf{W^{1,p}}$ \end{document}-attractors for the damped-driven Euler system in \begin{document} $\mathbb R^2$ \end{document}. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[3]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in \begin{document} $\mathbb{R}^{3}$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[4]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with \begin{document}$ p(x) $\end{document}-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[5]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of \begin{document}$ {\rm{PSL}}(2, \mathbb{R})$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[6]

Karina Samvelyan, Frol Zapolsky. Rigidity of the \begin{document}${{L}^{p}}$\end{document}-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[7]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[8]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[9]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on \begin{document} $\mathbb{R}^3$ \end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[10]

Qianying Xiao, Zuohuan Zheng. \begin{document}$C^1$\end{document} weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

[11]

Diego Maldonado. On interior \begin{document} $C^2$ \end{document}-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[12]

Renato Huzak. Cyclicity of degenerate graphic \begin{document}$DF_{2a}$\end{document} of Dumortier-Roussarie-Rousseau program. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1305-1316. doi: 10.3934/cpaa.2018063

[13]

Theodore Tachim Medjo. Pullback \begin{document}$ \mathbb{V}-$\end{document}attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[14]

Hideaki Takagi. Times until service completion and abandonment in an M/M/\begin{document}$ m$\end{document} preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018028

[15]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on \begin{document} $\mathbb{R}^N$ \end{document} driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018065

[16]

Karim Samei, Arezoo Soufi. Quadratic residue codes over \begin{document} $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$ \end{document}. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[17]

Jóhann Björnsson, Peter Giesl, Sigurdur F. Hafstein, Christopher M. Kellett. Computation of Lyapunov functions for systems with multiple local attractors. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4019-4039. doi: 10.3934/dcds.2015.35.4019

[18]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[19]

Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004

[20]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (13)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]