• Previous Article
    Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems
  • JIMO Home
  • This Issue
  • Next Article
    Advertising games on national brand and store brand in a dual-channel supply chain
January 2018, 14(1): 81-103. doi: 10.3934/jimo.2017038

Modeling and computation of water management by real options

1. 

Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and Economics, Tianjin, 300222, China

2. 

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author: Shuhua Zhang

Received  April 2016 Revised  February 2017 Published  April 2017

Fund Project: This project was supported in part by the National Basic Research Program (2012CB955804), the Major Research Plan of the National Natural Science Foundation of China (91430108), the National Natural Science Foundation of China (11171251), and the Major Program of Tianjin University of Finance and Economics (ZD1302)

It becomes increasingly important to manage water and improve the efficiency of irrigation under higher temperatures and irregular precipitation patterns. The choice of investment in water saving technologies and its timing play key roles in improving efficiency of water use. In this paper, we use a real option approach to establish a model to handle future uncertainties about the water price. In addition, to match the practical situation, the expiration of the real option is considered to be finite in our model, such that it is difficult to solve the model. Therefore, we reformulate the problem into a linear parabolic variational inequality (Ⅵ) and develop a power penalty method to solve it numerically. Thus, a nonlinear partial differential equation (PDE) is obtained, which is shown to be uniquely solvable and the solution of the nonlinear PDE converges to that of the Ⅵ at the rate of $O(λ^{-\frac{k}{2}})$ with $λ$ being the penalty number. Furthermore, a so-called fitted finite volume method is proposed to solve the nonlinear PDE. Finally, several numerical experiments are performed. It is shown that the subjective discount rate will affect the investment boundary mostly, and the flexibility to suspend operation will enlarge the investment region.

Citation: Shuhua Zhang, Xinyu Wang, Hua Li. Modeling and computation of water management by real options. Journal of Industrial & Management Optimization, 2018, 14 (1) : 81-103. doi: 10.3934/jimo.2017038
References:
[1]

M. Akinlar, Application of a finite element method for variational inequalities, Journal of Inequalities and Applications, 2013 (2013), 6pp. doi: 10.1186/1029-242X-2013-45.

[2]

R. BagatinJ. KlemesA. Reverberi and D. Huisingh, Conservation and improvements in water resource management: A global challenge, Journal of Cleaner Production, 77 (2014), 1-9. doi: 10.1016/j.jclepro.2014.04.027.

[3]

J. BoschM. Stoll and P. Benner, Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements, Journal of Computational Physics, 262 (2014), 38-57. doi: 10.1016/j.jcp.2013.12.053.

[4]

C. Boehm and M. Ulbrich, A semi-smooth Newton-CG method for constrained parameter identification in seismic tomography, SIAM Journal on Scientific Computing, 37 (2015), 334-364. doi: 10.1137/140968331.

[5]

N. Buong and N. Anh, An implicit iteration method for variational inequalities over the set of common fixed points for a finite family of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications, 1 (2011), Art. ID 276859, 10 pp.

[6]

J. Carey and D. Zilberman, A model of investment under uncertainty: Modern irrigation technology and emerging markets in water, American Journal of Agricultural Economics, 84 (2002), 171-183. doi: 10.1111/1467-8276.00251.

[7]

S. ChangJ. Wang and X. Wang, A fitted finite volume method for real option valuation of risks in climate change, Computers and Mathematics with Applications, 70 (2015), 1198-1219. doi: 10.1016/j.camwa.2015.07.003.

[8]

S. Chang and X. Wang, Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields, Plos One, 10 (2015), e0125679. doi: 10.1371/journal.pone.0125679.

[9]

S. ChangX. Wang and Z. Wang, Modeling and computation of transboundary industrial pollution with emissions permits trading by stochastic differential game, PLoS ONE, 10 (2015), e0138641. doi: 10.1371/journal.pone.0138641.

[10]

L. Chorn and S. Shokhor, Real options for risk management in petrolem development investments, Energy Economics, 28 (2006), 489-505.

[11]

B. Diomande and A. Zalinescu, Maximum principle for an optimal control problem associated to a stochastic variational inequality with delay, Electronic Journal of Probability, 20 (2014), 1-35. doi: 10.1214/EJP.v20-2741.

[12] A. Dixit and R. Pindyck, Investment under Uncertainty, Princeton University Press, Princeton, 1994.
[13]

R. France, Exploring the bonds and boundaries of water management in a global context, Journal of Cleaner Production, 60 (2013), 1-3. doi: 10.1016/j.jclepro.2013.07.004.

[14]

W. Han and B. Reddy, On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM Journal on Numerical Analysis, 32 (1995), 1778-1807. doi: 10.1137/0732081.

[15]

Y. He, Real Options in the Energy Markets, Ph. D Thesis, University of Twente, 2007.

[16]

C. HuangC. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320. doi: 10.1007/s00607-006-0164-4.

[17]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Operations Research Letters, 38 (2010), 72-76. doi: 10.1016/j.orl.2009.09.009.

[18]

K. Ito and K. Kunisch, Parabolic variational inequalities: The Lagrange multiplier approach, J. Math. Pures Appl., 85 (2006), 415-449. doi: 10.1016/j.matpur.2005.08.005.

[19]

L. KobariS. Jaimungal and Y. Lawryshyn, A real options model to evaluate the effect of environmental policies on the oil sands rate of expansion, Energy Economics, 45 (2014), 155-165. doi: 10.1016/j.eneco.2014.06.010.

[20] R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.
[21]

J. LiuL. Mu and X. Ye, An adaptive discontinuous finite volume method for elliptic problems, Journal of Computational and Applied Mathematics, 235 (2011), 5422-5431. doi: 10.1016/j.cam.2011.05.051.

[22]

A. McClintock, Investment in Irrigation Technology: Water Use Change, Public Policy and Uncertainty, Cooperative Research Centre for Irrigation Futures, Technical Report, 2014.

[23]

D. Pimentel, Water resources: Agriculture, the environment, and society, BioScience, 47 (1997), 97-106. doi: 10.2307/1313020.

[24]

J. Reyes and K. Kunisch, A semi-smooth Newton method for regularized state-constrained optimal control of the Navier-Stokes Equations, Computing, 78 (2006), 287-309. doi: 10.1007/s00607-006-0183-1.

[25]

J. Reyes and M. Hintermuller, A duality based semismooth Newton framework for solving variational inequalities of the second kind, Interfaces and Free Boundaries, 13 (2011), 437-462. doi: 10.4171/IFB/267.

[26]

P. Samuelson, Proof that properly anticipated prices fluctuate randomly, The World Scientific Handbook of Futures Markets, 6 (2015), 25-38. doi: 10.1142/9789814566926_0002.

[27]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA Journal of Numerical Analysis, 24 (2004), 699-720. doi: 10.1093/imanum/24.4.699.

[28]

Y. WangX. ChangZ. ChenY. Zhong and T. Fan, Impact of subsidy policies on recycling and remanufacturing using system dynamics methodology: a case of auto parts in China, Journal of Cleaner Production, 74 (2014), 161-171. doi: 10.1016/j.jclepro.2014.03.023.

[29]

T. Wang and R. Neufville, Building real options into physical systems with stochastic mixed-integer programming, In 8th Annual Real Options International Conference, (2004), 23-32.

[30]

G. Wang and X. Yang, The regularization method for a degenerate parabolic variational inequality arising from American option valuation, International Journal of Numerical Analysis and Modeling, 5 (2008), 222-238.

[31]

S. Wang and X. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214. doi: 10.1016/j.orl.2007.06.006.

[32]

S. WangX. Yang and K. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory and Applications, 129 (2006), 227-254. doi: 10.1007/s10957-006-9062-3.

[33]

S. WangS. Zhang and Z. Fang, A superconvergent fitted finite volume method for BlackScholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208. doi: 10.1002/num.21941.

[34]

A. Wasylewicz, Analysis of the power penalty method for American options using viscosity solutions, Thesis, University of Oslo, 2008.

[35]

S. XieH. Xu and H. Huang, Some iterative numerical methods for a kind of system of mixed nonlinear variational inequalities, Journal of Mathematics Research, 6 (2014), 65-69. doi: 10.5539/jmr.v6n1p65.

[36]

A. Zalinescu, Stochastic variational inequalities with jumps, Stochastic Processes and their Applications, 124 (2014), 785-811. doi: 10.1016/j.spa.2013.09.005.

[37]

S. ZhangX. Wang and A. Shananin, Modeling and computation of mean field equilibria in producers' game with emission permits trading, Communications in Nonlinear Science and Numerical Simulation, 37 (2016), 238-248. doi: 10.1016/j.cnsns.2016.01.020.

[38]

K. ZhangS. WangX. Yang and K. Teo, A power penalty approach to numerical solutions of two-asset American options, Numerical Mathematics: Theory, Method and Applications, 2 (2009), 202-233.

[39]

https://www.ipcc.ch/index.htm.

[40]

http://www.worldwildlife.org/threats/water-scarcity.

[41]

https://www.coag.gov.au/sites/default/files/agreements/Murray_Darling_IGA.pdf.

show all references

References:
[1]

M. Akinlar, Application of a finite element method for variational inequalities, Journal of Inequalities and Applications, 2013 (2013), 6pp. doi: 10.1186/1029-242X-2013-45.

[2]

R. BagatinJ. KlemesA. Reverberi and D. Huisingh, Conservation and improvements in water resource management: A global challenge, Journal of Cleaner Production, 77 (2014), 1-9. doi: 10.1016/j.jclepro.2014.04.027.

[3]

J. BoschM. Stoll and P. Benner, Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements, Journal of Computational Physics, 262 (2014), 38-57. doi: 10.1016/j.jcp.2013.12.053.

[4]

C. Boehm and M. Ulbrich, A semi-smooth Newton-CG method for constrained parameter identification in seismic tomography, SIAM Journal on Scientific Computing, 37 (2015), 334-364. doi: 10.1137/140968331.

[5]

N. Buong and N. Anh, An implicit iteration method for variational inequalities over the set of common fixed points for a finite family of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications, 1 (2011), Art. ID 276859, 10 pp.

[6]

J. Carey and D. Zilberman, A model of investment under uncertainty: Modern irrigation technology and emerging markets in water, American Journal of Agricultural Economics, 84 (2002), 171-183. doi: 10.1111/1467-8276.00251.

[7]

S. ChangJ. Wang and X. Wang, A fitted finite volume method for real option valuation of risks in climate change, Computers and Mathematics with Applications, 70 (2015), 1198-1219. doi: 10.1016/j.camwa.2015.07.003.

[8]

S. Chang and X. Wang, Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields, Plos One, 10 (2015), e0125679. doi: 10.1371/journal.pone.0125679.

[9]

S. ChangX. Wang and Z. Wang, Modeling and computation of transboundary industrial pollution with emissions permits trading by stochastic differential game, PLoS ONE, 10 (2015), e0138641. doi: 10.1371/journal.pone.0138641.

[10]

L. Chorn and S. Shokhor, Real options for risk management in petrolem development investments, Energy Economics, 28 (2006), 489-505.

[11]

B. Diomande and A. Zalinescu, Maximum principle for an optimal control problem associated to a stochastic variational inequality with delay, Electronic Journal of Probability, 20 (2014), 1-35. doi: 10.1214/EJP.v20-2741.

[12] A. Dixit and R. Pindyck, Investment under Uncertainty, Princeton University Press, Princeton, 1994.
[13]

R. France, Exploring the bonds and boundaries of water management in a global context, Journal of Cleaner Production, 60 (2013), 1-3. doi: 10.1016/j.jclepro.2013.07.004.

[14]

W. Han and B. Reddy, On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM Journal on Numerical Analysis, 32 (1995), 1778-1807. doi: 10.1137/0732081.

[15]

Y. He, Real Options in the Energy Markets, Ph. D Thesis, University of Twente, 2007.

[16]

C. HuangC. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320. doi: 10.1007/s00607-006-0164-4.

[17]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Operations Research Letters, 38 (2010), 72-76. doi: 10.1016/j.orl.2009.09.009.

[18]

K. Ito and K. Kunisch, Parabolic variational inequalities: The Lagrange multiplier approach, J. Math. Pures Appl., 85 (2006), 415-449. doi: 10.1016/j.matpur.2005.08.005.

[19]

L. KobariS. Jaimungal and Y. Lawryshyn, A real options model to evaluate the effect of environmental policies on the oil sands rate of expansion, Energy Economics, 45 (2014), 155-165. doi: 10.1016/j.eneco.2014.06.010.

[20] R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.
[21]

J. LiuL. Mu and X. Ye, An adaptive discontinuous finite volume method for elliptic problems, Journal of Computational and Applied Mathematics, 235 (2011), 5422-5431. doi: 10.1016/j.cam.2011.05.051.

[22]

A. McClintock, Investment in Irrigation Technology: Water Use Change, Public Policy and Uncertainty, Cooperative Research Centre for Irrigation Futures, Technical Report, 2014.

[23]

D. Pimentel, Water resources: Agriculture, the environment, and society, BioScience, 47 (1997), 97-106. doi: 10.2307/1313020.

[24]

J. Reyes and K. Kunisch, A semi-smooth Newton method for regularized state-constrained optimal control of the Navier-Stokes Equations, Computing, 78 (2006), 287-309. doi: 10.1007/s00607-006-0183-1.

[25]

J. Reyes and M. Hintermuller, A duality based semismooth Newton framework for solving variational inequalities of the second kind, Interfaces and Free Boundaries, 13 (2011), 437-462. doi: 10.4171/IFB/267.

[26]

P. Samuelson, Proof that properly anticipated prices fluctuate randomly, The World Scientific Handbook of Futures Markets, 6 (2015), 25-38. doi: 10.1142/9789814566926_0002.

[27]

S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA Journal of Numerical Analysis, 24 (2004), 699-720. doi: 10.1093/imanum/24.4.699.

[28]

Y. WangX. ChangZ. ChenY. Zhong and T. Fan, Impact of subsidy policies on recycling and remanufacturing using system dynamics methodology: a case of auto parts in China, Journal of Cleaner Production, 74 (2014), 161-171. doi: 10.1016/j.jclepro.2014.03.023.

[29]

T. Wang and R. Neufville, Building real options into physical systems with stochastic mixed-integer programming, In 8th Annual Real Options International Conference, (2004), 23-32.

[30]

G. Wang and X. Yang, The regularization method for a degenerate parabolic variational inequality arising from American option valuation, International Journal of Numerical Analysis and Modeling, 5 (2008), 222-238.

[31]

S. Wang and X. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214. doi: 10.1016/j.orl.2007.06.006.

[32]

S. WangX. Yang and K. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory and Applications, 129 (2006), 227-254. doi: 10.1007/s10957-006-9062-3.

[33]

S. WangS. Zhang and Z. Fang, A superconvergent fitted finite volume method for BlackScholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208. doi: 10.1002/num.21941.

[34]

A. Wasylewicz, Analysis of the power penalty method for American options using viscosity solutions, Thesis, University of Oslo, 2008.

[35]

S. XieH. Xu and H. Huang, Some iterative numerical methods for a kind of system of mixed nonlinear variational inequalities, Journal of Mathematics Research, 6 (2014), 65-69. doi: 10.5539/jmr.v6n1p65.

[36]

A. Zalinescu, Stochastic variational inequalities with jumps, Stochastic Processes and their Applications, 124 (2014), 785-811. doi: 10.1016/j.spa.2013.09.005.

[37]

S. ZhangX. Wang and A. Shananin, Modeling and computation of mean field equilibria in producers' game with emission permits trading, Communications in Nonlinear Science and Numerical Simulation, 37 (2016), 238-248. doi: 10.1016/j.cnsns.2016.01.020.

[38]

K. ZhangS. WangX. Yang and K. Teo, A power penalty approach to numerical solutions of two-asset American options, Numerical Mathematics: Theory, Method and Applications, 2 (2009), 202-233.

[39]

https://www.ipcc.ch/index.htm.

[40]

http://www.worldwildlife.org/threats/water-scarcity.

[41]

https://www.coag.gov.au/sites/default/files/agreements/Murray_Darling_IGA.pdf.

Figure 1.  European real option values for Test 1
Figure 2.  American real option values for Test 2
Figure 3.  The Δ and the optimal exercise boundary for Test 2
Figure 4.  Comparative statics for the main parameters for Test 2
Figure 5.  Real option values for Test 3
Figure 6.  The ∆ and the optimal exercise boundary for Test 3
Figure 7.  The effect of the suspending operation on investment boundary for Test 3
Figure 8.  Trigger prices under different levels of subsidy in four time points
Table 1.  Computed errors in the $L^{\infty}$-norm at $t = 0$
mesh$L^{\infty}$-normratiomesh$L^{\infty}$-normratio}
$2^5\times2^4$197.4574$2^{10}\times2^9$0.44181.9276
$2^6\times2^5$55.14973.5804$2^{11}\times2^{10}$0.04539.7528
$2^7\times2^6$28.77321.9176$2^{12}\times2^{11}$0.01243.6532
$2^8\times2^7$2.93579.8012$2^{13}\times2^{12}$0.00542.2963
$2^9\times2^8$0.85123.4489
mesh$L^{\infty}$-normratiomesh$L^{\infty}$-normratio}
$2^5\times2^4$197.4574$2^{10}\times2^9$0.44181.9276
$2^6\times2^5$55.14973.5804$2^{11}\times2^{10}$0.04539.7528
$2^7\times2^6$28.77321.9176$2^{12}\times2^{11}$0.01243.6532
$2^8\times2^7$2.93579.8012$2^{13}\times2^{12}$0.00542.2963
$2^9\times2^8$0.85123.4489
[1]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[2]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[3]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial & Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[4]

Kai Zhang, Kok Lay Teo. A penalty-based method from reconstructing smooth local volatility surface from American options. Journal of Industrial & Management Optimization, 2015, 11 (2) : 631-644. doi: 10.3934/jimo.2015.11.631

[5]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[6]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[7]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[8]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[9]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[10]

Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009

[11]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[12]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[13]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[14]

Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379

[15]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[16]

Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006

[17]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[18]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[19]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[20]

Min Dai, Zhou Yang. A note on finite horizon optimal investment and consumption with transaction costs. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1445-1454. doi: 10.3934/dcdsb.2016005

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]