
-
Previous Article
D.C. programming approach for solving an applied ore-processing problem
- JIMO Home
- This Issue
-
Next Article
LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback
An optimized direction statistics for detecting and removing random-valued impulse noise
1. | School of Computer Science, Chengdu University of Information Technology, No.24 Block 1, Xuefu Road, 610225, Chengdu, China |
2. | School of Computer Science and Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 611731, Chengdu, China |
In this paper, we propose a robust local image statistic based on optimized direction, by which we can distinguish image details and edges from impulse noise effectively. Therefore it can identify noisy pixels more accurately. Meanwhile, we combine it with the edge-preserving regularization to remove random-valued impulse noise in the cause of precise estimated value. Simulation results show that our method can preserve edges and details efficiently even at high noise levels.
References:
[1] |
E. Abreu, M. Lightstone and S. K. Mitra,
A new efficient approach for the removal of impulse noise from highly corrupted images, IEEE Transactions on Image Processing, 5 (1996), 1012-1025.
doi: 10.1109/83.503916. |
[2] |
S. Akkoul, R. Lédée and R. Leconge,
A new adaptive switching median filter, IEEE Signal Processing Letters, 17 (2010), 587-590.
doi: 10.1109/LSP.2010.2048646. |
[3] |
G. Arce and J. Paredes,
Recursive weighted median filters admitting negative weights and their optimization, IEEE Transactions on Image Processing, 48 (2000), 768-779.
doi: 10.1109/78.824671. |
[4] |
A. S. Awad,
Standard deviation for obtaining the optimal direction in the removal of impulse noise, IEEE Signal Processing Letters, 18 (2011), 407-410.
doi: 10.1109/LSP.2011.2154330. |
[5] |
M. J. Black and A. Rangarajan,
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision, 19 (1996), 57-91.
doi: 10.1007/BF00131148. |
[6] |
A. C. Bovik, Handbook of Image and Video Processing, 2nd edition, Academic press, 2010, New York, 2010. Google Scholar |
[7] |
D. R. K. Brownrigg,
The weighted median filter, Communications of the ACM, 27 (1984), 807-818.
doi: 10.1145/358198.358222. |
[8] |
J.-F. Cai, R. H. Chan and C. Fiore,
Minimization of a detail-preserving regularization functional for impulse noise removal, IEEE Transactions on Image Processing, 29 (2007), 79-91.
doi: 10.1007/s10851-007-0027-4. |
[9] |
R. H. Chan, C.-W. Ho and M. Nikolova,
Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Transactions on Image Processing, 14 (2005), 1479-1485.
doi: 10.1109/TIP.2005.852196. |
[10] |
R. H. Chan, C.-W. Ho and C.-Y. Leung,
Minimization of detail-preserving regularization functional by Newton's method with continuation, Proceedings -International Conference on Image Processing, ICIP, 1 (2005), 125-128.
doi: 10.1109/ICIP.2005.1529703. |
[11] |
R. H. Chan, C. Hu and M. Nikolova,
An iterative procedure for removing random-valued impulse noise, IEEE Signal Processing Letters, 11 (2004), 921-924.
doi: 10.1109/LSP.2004.838190. |
[12] |
P. Charbonnier, L. Blanc-Féraud and G. Aubert,
Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, 6 (1997), 298-311.
doi: 10.1109/83.551699. |
[13] |
T. Chen and H. R. Wu,
Adaptive impulse detection using center-weighted medial filters, IEEE Transactions on Image Processing Letters, 8 (2001), 1-3.
doi: 10.1109/97.889633. |
[14] |
Y. Dong, H. R. Chan and S. Xu,
Edge-preserving regularization, Image denoising, Noise detector, Random-valued impulse noise, IEEE Transactions on Image Processing, 16 (2007), 1112-1120.
doi: 10.1109/TIP.2006.891348. |
[15] |
Y. Dong and S. Xu,
A new directional weighted median filter for removal of random-valued impulse noise, IEEE Transactions on Image Processing, 14 (2007), 193-196.
doi: 10.1109/LSP.2006.884014. |
[16] |
R. Garnett, T. Huegerich and C. Chui,
A universal noise removal algorithm with an impulse detector, IEEE Transactions on Image Processing, 14 (2005), 1747-1754.
doi: 10.1109/TIP.2005.857261. |
[17] |
U. Ghaneka, A. K. Singh and and R. Pandey,
A contrast enhancement-based filter for removal of random valued impulse noise, IEEE Signal Processing Letters, 17 (2010), 47-50.
doi: 10.1109/LSP.2009.2032479. |
[18] |
R. Gonzalez and R. Woods, Digital Image Processing, 2nd edition, Addision-Wesley Publishing Companyl, 2007. Google Scholar |
[19] |
P. J. Green,
Bayesian reconstructions from emission tomography data using a modified EM algorithm, IEEE Transactions on Medical Imaging, 9 (1990), 84-93.
doi: 10.1109/42.52985. |
[20] |
H. H. Dam, K. L. Teo and S. Nordebo,
The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints, IEEE Transactions on Signal Processing, 48 (2000), 2314-2320.
doi: 10.1109/78.852012. |
[21] |
S. J. Ko and Y. H. Lee,
Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems, 38 (1991), 984-993.
doi: 10.1109/31.83870. |
[22] |
S. Z. Li,
On discontinuity-adaptive smoothness priors in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), 576-586.
doi: 10.1109/34.387504. |
[23] |
L. Liu, C. P. Chen and Y. Zhou,
A new weighted mean filter with a two-phase detector for removing impulse noise, Information Sciences, 315 (2015), 1-16.
doi: 10.1016/j.ins.2015.03.067. |
[24] |
W. Luo,
A new efficient impulse detection algorithm for the removal of impulse noise, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 88 (2005), 2579-2586.
doi: 10.1093/ietfec/e88-a.10.2579. |
[25] |
M. Nikolova,
A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99-120.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[26] |
W. K. Pratt, Median Filtering, Image Proc Institute, University of Southern California, Los Angeles, Tech. Rep., 1975. Google Scholar |
[27] |
F. Russo,
Hybrid neuro-fuzzy filter for impulse noise removal, Pattern Recognition, 32 (1999), 1843-1855.
doi: 10.1016/S0031-3203(99)00009-6. |
[28] |
T. Sun and Y. Neuvo,
Detail-preserving median based filters in image processing, Pattern Recognition Letters, 15 (1994), 341-347.
doi: 10.1016/0167-8655(94)90082-5. |
[29] |
K. Toh and N. Isa,
Cluster-based adaptive fuzzy switching median filter for universal impulse noise reduction, IEEE Transactions on Consumer Electronics, 56 (2010), 2560-2568.
doi: 10.1109/TCE.2010.5681141. |
[30] |
D. Van De Ville, M. Nachtegael and D. Van der Weken,
Noise reduction by fuzzy image filtering, IEEE Transactions on Fuzzy Systems, 11 (2003), 429-436.
doi: 10.1109/TFUZZ.2003.814830. |
[31] |
C. R. Vogel and M. E. Oman,
Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, 7 (1998), 813-824.
doi: 10.1109/83.679423. |
[32] |
B. Xiong and Z. Yin,
A universal denoising framework with a new impulse detector and nonlocal means, IEEE Transactions on Image Processing, 21 (2012), 1663-1675.
doi: 10.1109/TIP.2011.2172804. |
[33] |
H. Xu, G. Zhu and H. Peng,
Adaptive fuzzy switching filter for images corrupted by impulse noise, Pattern Recognition Letters, 25 (2004), 1657-1663.
doi: 10.1016/j.patrec.2004.05.025. |
[34] |
M. E. Yüksel and A. Baştürk,
A simple generalized neuro-fuzzy operator for efficient removal of impulse noise from highly corrupted digital images, AEU -International Journal of Electronics and Communications, 5 (1996), 1012-1025.
doi: 10.1016/j.aeue.2004.10.002. |
[35] |
M. E. Yüksel,
A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise, IEEE Transactions on Image Processing, 15 (2006), 928-936.
doi: 10.1109/TIP.2005.863941. |
[36] |
X.-Y. Zeng and L.-H. Yang,
Mixed impulse and gaussian noise removal using detail-preserving regularization, Optical Engineering, 49 (2010), 097002-097002.
doi: 10.1117/1.3485756. |
show all references
References:
[1] |
E. Abreu, M. Lightstone and S. K. Mitra,
A new efficient approach for the removal of impulse noise from highly corrupted images, IEEE Transactions on Image Processing, 5 (1996), 1012-1025.
doi: 10.1109/83.503916. |
[2] |
S. Akkoul, R. Lédée and R. Leconge,
A new adaptive switching median filter, IEEE Signal Processing Letters, 17 (2010), 587-590.
doi: 10.1109/LSP.2010.2048646. |
[3] |
G. Arce and J. Paredes,
Recursive weighted median filters admitting negative weights and their optimization, IEEE Transactions on Image Processing, 48 (2000), 768-779.
doi: 10.1109/78.824671. |
[4] |
A. S. Awad,
Standard deviation for obtaining the optimal direction in the removal of impulse noise, IEEE Signal Processing Letters, 18 (2011), 407-410.
doi: 10.1109/LSP.2011.2154330. |
[5] |
M. J. Black and A. Rangarajan,
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision, 19 (1996), 57-91.
doi: 10.1007/BF00131148. |
[6] |
A. C. Bovik, Handbook of Image and Video Processing, 2nd edition, Academic press, 2010, New York, 2010. Google Scholar |
[7] |
D. R. K. Brownrigg,
The weighted median filter, Communications of the ACM, 27 (1984), 807-818.
doi: 10.1145/358198.358222. |
[8] |
J.-F. Cai, R. H. Chan and C. Fiore,
Minimization of a detail-preserving regularization functional for impulse noise removal, IEEE Transactions on Image Processing, 29 (2007), 79-91.
doi: 10.1007/s10851-007-0027-4. |
[9] |
R. H. Chan, C.-W. Ho and M. Nikolova,
Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Transactions on Image Processing, 14 (2005), 1479-1485.
doi: 10.1109/TIP.2005.852196. |
[10] |
R. H. Chan, C.-W. Ho and C.-Y. Leung,
Minimization of detail-preserving regularization functional by Newton's method with continuation, Proceedings -International Conference on Image Processing, ICIP, 1 (2005), 125-128.
doi: 10.1109/ICIP.2005.1529703. |
[11] |
R. H. Chan, C. Hu and M. Nikolova,
An iterative procedure for removing random-valued impulse noise, IEEE Signal Processing Letters, 11 (2004), 921-924.
doi: 10.1109/LSP.2004.838190. |
[12] |
P. Charbonnier, L. Blanc-Féraud and G. Aubert,
Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, 6 (1997), 298-311.
doi: 10.1109/83.551699. |
[13] |
T. Chen and H. R. Wu,
Adaptive impulse detection using center-weighted medial filters, IEEE Transactions on Image Processing Letters, 8 (2001), 1-3.
doi: 10.1109/97.889633. |
[14] |
Y. Dong, H. R. Chan and S. Xu,
Edge-preserving regularization, Image denoising, Noise detector, Random-valued impulse noise, IEEE Transactions on Image Processing, 16 (2007), 1112-1120.
doi: 10.1109/TIP.2006.891348. |
[15] |
Y. Dong and S. Xu,
A new directional weighted median filter for removal of random-valued impulse noise, IEEE Transactions on Image Processing, 14 (2007), 193-196.
doi: 10.1109/LSP.2006.884014. |
[16] |
R. Garnett, T. Huegerich and C. Chui,
A universal noise removal algorithm with an impulse detector, IEEE Transactions on Image Processing, 14 (2005), 1747-1754.
doi: 10.1109/TIP.2005.857261. |
[17] |
U. Ghaneka, A. K. Singh and and R. Pandey,
A contrast enhancement-based filter for removal of random valued impulse noise, IEEE Signal Processing Letters, 17 (2010), 47-50.
doi: 10.1109/LSP.2009.2032479. |
[18] |
R. Gonzalez and R. Woods, Digital Image Processing, 2nd edition, Addision-Wesley Publishing Companyl, 2007. Google Scholar |
[19] |
P. J. Green,
Bayesian reconstructions from emission tomography data using a modified EM algorithm, IEEE Transactions on Medical Imaging, 9 (1990), 84-93.
doi: 10.1109/42.52985. |
[20] |
H. H. Dam, K. L. Teo and S. Nordebo,
The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints, IEEE Transactions on Signal Processing, 48 (2000), 2314-2320.
doi: 10.1109/78.852012. |
[21] |
S. J. Ko and Y. H. Lee,
Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems, 38 (1991), 984-993.
doi: 10.1109/31.83870. |
[22] |
S. Z. Li,
On discontinuity-adaptive smoothness priors in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), 576-586.
doi: 10.1109/34.387504. |
[23] |
L. Liu, C. P. Chen and Y. Zhou,
A new weighted mean filter with a two-phase detector for removing impulse noise, Information Sciences, 315 (2015), 1-16.
doi: 10.1016/j.ins.2015.03.067. |
[24] |
W. Luo,
A new efficient impulse detection algorithm for the removal of impulse noise, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 88 (2005), 2579-2586.
doi: 10.1093/ietfec/e88-a.10.2579. |
[25] |
M. Nikolova,
A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99-120.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[26] |
W. K. Pratt, Median Filtering, Image Proc Institute, University of Southern California, Los Angeles, Tech. Rep., 1975. Google Scholar |
[27] |
F. Russo,
Hybrid neuro-fuzzy filter for impulse noise removal, Pattern Recognition, 32 (1999), 1843-1855.
doi: 10.1016/S0031-3203(99)00009-6. |
[28] |
T. Sun and Y. Neuvo,
Detail-preserving median based filters in image processing, Pattern Recognition Letters, 15 (1994), 341-347.
doi: 10.1016/0167-8655(94)90082-5. |
[29] |
K. Toh and N. Isa,
Cluster-based adaptive fuzzy switching median filter for universal impulse noise reduction, IEEE Transactions on Consumer Electronics, 56 (2010), 2560-2568.
doi: 10.1109/TCE.2010.5681141. |
[30] |
D. Van De Ville, M. Nachtegael and D. Van der Weken,
Noise reduction by fuzzy image filtering, IEEE Transactions on Fuzzy Systems, 11 (2003), 429-436.
doi: 10.1109/TFUZZ.2003.814830. |
[31] |
C. R. Vogel and M. E. Oman,
Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, 7 (1998), 813-824.
doi: 10.1109/83.679423. |
[32] |
B. Xiong and Z. Yin,
A universal denoising framework with a new impulse detector and nonlocal means, IEEE Transactions on Image Processing, 21 (2012), 1663-1675.
doi: 10.1109/TIP.2011.2172804. |
[33] |
H. Xu, G. Zhu and H. Peng,
Adaptive fuzzy switching filter for images corrupted by impulse noise, Pattern Recognition Letters, 25 (2004), 1657-1663.
doi: 10.1016/j.patrec.2004.05.025. |
[34] |
M. E. Yüksel and A. Baştürk,
A simple generalized neuro-fuzzy operator for efficient removal of impulse noise from highly corrupted digital images, AEU -International Journal of Electronics and Communications, 5 (1996), 1012-1025.
doi: 10.1016/j.aeue.2004.10.002. |
[35] |
M. E. Yüksel,
A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise, IEEE Transactions on Image Processing, 15 (2006), 928-936.
doi: 10.1109/TIP.2005.863941. |
[36] |
X.-Y. Zeng and L.-H. Yang,
Mixed impulse and gaussian noise removal using detail-preserving regularization, Optical Engineering, 49 (2010), 097002-097002.
doi: 10.1117/1.3485756. |







| |
| |
| |
|
| |
| |
| |
|
Method | 40% | 50% | 60% | ||||||
Miss | False-hit | Total | Miss | False-hit | Total | Miss | False-hit | Total | |
ACWM[13] | 14249 | 1928 | 16177 | 20596 | 3602 | 24198 | 31165 | 6668 | 37833 |
Luo[24] | 14365 | 1713 | 16078 | 20596 | 2135 | 22371 | 33374 | 2886 | 36260 |
CEF[17] | 14727 | 6141 | 20868 | 17490 | 7745 | 25235 | 21314 | 8657 | 29971 |
ASWM[2] | 7381 | 11042 | 18423 | 10614 | 12050 | 22664 | 19577 | 16845 | 36422 |
DWM[15] | 11600 | 7937 | 19537 | 15035 | 8652 | 23687 | 15373 | 14215 | 29588 |
ROR-NLM[32] | 12443 | 3056 | 15499 | 15778 | 3655 | 19433 | 21601 | 5917 | 27518 |
ROAD[16] | 13476 | 8079 | 21555 | 13771 | 10055 | 23826 | 17212 | 9330 | 26542 |
ROLD[14] | 13987 | 7471 | 21458 | 16331 | 7875 | 24206 | 17245 | 9223 | 26468 |
Proposed | 10158 | 5234 | 15392 | 11302 | 6583 | 17885 | 15234 | 7623 | 22857 |
Method | 40% | 50% | 60% | ||||||
Miss | False-hit | Total | Miss | False-hit | Total | Miss | False-hit | Total | |
ACWM[13] | 14249 | 1928 | 16177 | 20596 | 3602 | 24198 | 31165 | 6668 | 37833 |
Luo[24] | 14365 | 1713 | 16078 | 20596 | 2135 | 22371 | 33374 | 2886 | 36260 |
CEF[17] | 14727 | 6141 | 20868 | 17490 | 7745 | 25235 | 21314 | 8657 | 29971 |
ASWM[2] | 7381 | 11042 | 18423 | 10614 | 12050 | 22664 | 19577 | 16845 | 36422 |
DWM[15] | 11600 | 7937 | 19537 | 15035 | 8652 | 23687 | 15373 | 14215 | 29588 |
ROR-NLM[32] | 12443 | 3056 | 15499 | 15778 | 3655 | 19433 | 21601 | 5917 | 27518 |
ROAD[16] | 13476 | 8079 | 21555 | 13771 | 10055 | 23826 | 17212 | 9330 | 26542 |
ROLD[14] | 13987 | 7471 | 21458 | 16331 | 7875 | 24206 | 17245 | 9223 | 26468 |
Proposed | 10158 | 5234 | 15392 | 11302 | 6583 | 17885 | 15234 | 7623 | 22857 |
Method | "Lena" image | "Bridge" image | "Pentagon" image | ||||||
40 % | 50 % | 60 % | 40 % | 50 % | 60 % | 40 % | 50 % | 60 % | |
ACWM[13] | 29.58 | 24.63 | 20.40 | 23.52 | 21.41 | 19.12 | 27.09 | 25.47 | 23.41 |
Luo[24] | 30.77 | 27.16 | 22.62 | 23.59 | 21.62 | 19.17 | 27.00 | 25.33 | 22.78 |
CEF[17] | 32.11 | 29.76 | 25.90 | 23.85 | 22.79 | 21.41 | 27.16 | 26.24 | 25.12 |
ASWM[2] | 32.29 | 29.23 | 25.04 | 23.97 | 22.58 | 21.11 | 27.29 | 26.20 | 24.98 |
DWM[15] | 32.34 | 29.32 | 25.49 | 24.07 | 22.58 | 21.13 | 27.23 | 26.07 | 25.03 |
ROR-NLM[32] | 32.97 | 30.02 | 25.60 | 24.18 | 22.84 | 21.19 | 27.68 | 26.56 | 25.36 |
ROAD[16] | 32.07 | 30.24 | 27.42 | 23.73 | 23.09 | 21.88 | 26.61 | 25.92 | 24.82 |
ROLD[14] | 32.75 | 31.12 | 28.98 | 24.51 | 23.51 | 22.52 | 27.58 | 26.65 | 25.61 |
Proposed | 33.62 | 31.73 | 29.56 | 24.98 | 23.82 | 22.79 | 27.92 | 26.98 | 25.93 |
Method | "Lena" image | "Bridge" image | "Pentagon" image | ||||||
40 % | 50 % | 60 % | 40 % | 50 % | 60 % | 40 % | 50 % | 60 % | |
ACWM[13] | 29.58 | 24.63 | 20.40 | 23.52 | 21.41 | 19.12 | 27.09 | 25.47 | 23.41 |
Luo[24] | 30.77 | 27.16 | 22.62 | 23.59 | 21.62 | 19.17 | 27.00 | 25.33 | 22.78 |
CEF[17] | 32.11 | 29.76 | 25.90 | 23.85 | 22.79 | 21.41 | 27.16 | 26.24 | 25.12 |
ASWM[2] | 32.29 | 29.23 | 25.04 | 23.97 | 22.58 | 21.11 | 27.29 | 26.20 | 24.98 |
DWM[15] | 32.34 | 29.32 | 25.49 | 24.07 | 22.58 | 21.13 | 27.23 | 26.07 | 25.03 |
ROR-NLM[32] | 32.97 | 30.02 | 25.60 | 24.18 | 22.84 | 21.19 | 27.68 | 26.56 | 25.36 |
ROAD[16] | 32.07 | 30.24 | 27.42 | 23.73 | 23.09 | 21.88 | 26.61 | 25.92 | 24.82 |
ROLD[14] | 32.75 | 31.12 | 28.98 | 24.51 | 23.51 | 22.52 | 27.58 | 26.65 | 25.61 |
Proposed | 33.62 | 31.73 | 29.56 | 24.98 | 23.82 | 22.79 | 27.92 | 26.98 | 25.93 |
Noise Density | Run Time(s) | ||
Detection | Removal | Total | |
30 % | 4.72 | 34.69 | 39.41 |
40 % | 4.83 | 73.30 | 78.13 |
50 % | 4.67 | 163.53 | 168.20 |
60 % | 4.65 | 239.58 | 244.23 |
70 % | 4.87 | 271.64 | 276.51 |
Noise Density | Run Time(s) | ||
Detection | Removal | Total | |
30 % | 4.72 | 34.69 | 39.41 |
40 % | 4.83 | 73.30 | 78.13 |
50 % | 4.67 | 163.53 | 168.20 |
60 % | 4.65 | 239.58 | 244.23 |
70 % | 4.87 | 271.64 | 276.51 |
Image Scale | Run Time(s) | |
Detection | Removal | |
64×64 | 0.38 | 5.5 |
128× 128 | 1.13 | 14.28 |
256×256 | 4.27 | 34.69 |
512×512 | 17.19 | 111.64 |
Image Scale | Run Time(s) | |
Detection | Removal | |
64×64 | 0.38 | 5.5 |
128× 128 | 1.13 | 14.28 |
256×256 | 4.27 | 34.69 |
512×512 | 17.19 | 111.64 |
[1] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003 |
[2] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[3] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[4] |
Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233 |
[5] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[6] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[7] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[8] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[9] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[10] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[11] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[12] |
Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027 |
[13] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[14] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[15] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[16] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020 |
[17] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[18] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[19] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[20] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]