doi: 10.3934/jimo.2017073

Analysis of a batch service multi-server polling system with dynamic service control

1. 

College of Economics and Management, Shandong University of Science and Technology Qingdao, Shandong, 266590, China

2. 

Department of Mathematics, School of Science, Nanjing University of Science and Technology Nanjing, Jiangsu, 210094, China

* Corresponding author: Tao Jiang

Received  April 2016 Revised  September 2016 Published  September 2017

This paper considers a multi-server polling system with batch service of an unlimited size, i.e., the so called "Israeli queue" with multi-server, where the service rate of each server switches between a low and a high value depending on the number of groups standing in front of the servers upon its service completion. By means of matrix geometric method and LU-type RG factorization of the infinitesimal generator in irreducible QBD process, the explicit closed-form of rate matrix $R$ and the steady state distribution of the queue length are respectively derived. In terms of the results, some stationary performance measures are obtained. In addition, some numerical examples are presented.

Citation: Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2017073
References:
[1]

O. J. Boxma, Y. van der Wal and U. Yechiali, Polling with gated batch service, in: Proceedings of the Sixth International Conference on "Analysis of Manufacturing Systems", Lunteren, Netherlands, 2007,155-159.

[2]

O.J. BoxmaY. van der Wal and U. Yechiali, Polling with batch service, Stochastic Models, 24 (2008), 604-625. doi: 10.1080/15326340802427497.

[3]

J. D. Cordeiro and J. P. Kharoufeh, The unreliable M/M/1 retrial queue in a random environment, Stochastic Models, 28 (2012), 29-48. doi: 10.1080/15326349.2011.614478.

[4]

Y. Dimitrakopoulosa and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486. doi: 10.1016/j.ejor.2015.12.029.

[5]

E. H. Elhafsi and M. Molle, The solution to QBD processes with finite state space, Stochastic Analysis and Applications, 25 (2007), 763-779. doi: 10.1080/07362990701419946.

[6]

D. P. Heyman, The T policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.

[7]

P. Jayachitra and A. J. Albert, Recent developments in queueing models under N-policy: A short survey, International Journal of Mathematical Archive, 5 (2014), 227-233.

[8]

K. Kalidass and R. Kasturi, A queue with working breakdowns, Computers and Industrial Engineering, 63 (2012), 779-783. doi: 10.1016/j.cie.2012.04.018.

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadelphia, 1999.

[10]

Q. L. Li, Constructive Computation in Stochastic Models with Applications: the RG-Factorizations, Springer, Berlin and Tsinghua University Press, Beijing, 2010.

[11]

Z. MaP. Wang and W. Yue, Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations, Journal of Industrial and Management Optimization, 13 (2017), 1467-1481. doi: 10.3934/jimo.2017002.

[12]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: Algorithmic Approach, Johns Hopkins University Press, Baltimore, 1981.

[13]

N. Perel and U. Yechiali, The Israeli queue with priorities, Stochastic Models, 29 (2013), 353-379. doi: 10.1080/15326349.2013.808911.

[14]

N. Perel and U. Yechiali, The Israeli queue with infinite number of groups, Probability in the Engineering and Informational Sciences, 28 (2014), 1-19. doi: 10.1017/S0269964813000296.

[15]

N. Perel and U. Yechiali, The Israeli Queue with retrials, Queueing Systems, 78 (2014), 31-56. doi: 10.1007/s11134-013-9389-z.

[16]

N. Perel and U. Yechiali, The Israeli Queue with a general group-joining policy, Annals of Operations Research, (2015), 1-34. doi: 10.1007/s10479-015-1942-1.

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1WV), Performances Evaluation, 50 (2002), 41-52.

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.

[19]

A. TirdadW. K. Grassmann and J. Tavakoli, Optimal policies of M(t)/M/c/c queues with two different levels of servers, European Journal of Operational Research, 249 (2016), 1124-1130. doi: 10.1016/j.ejor.2015.10.040.

[20]

Y. van der Wal and U. Yechiali, Dynamic visit-order rules for batch-service polling, Probability in the Engineering and Informational Sciences, 17 (2003), 351-367. doi: 10.1017/S0269964803173044.

[21]

T. Y. WangK. H. Wang and W. L. Pearn, Optimization of the T-policy M/G/1 queue with server breakdowns and general start up times, Journal of Computational and Applied Mathematics, 228 (2009), 270-278. doi: 10.1016/j.cam.2008.09.021.

[22]

Z. G. Zhang and N. Tian, An analysis of queueing systems with multi-task servers, European Journal of Operational Research, 156 (2004), 375-389. doi: 10.1016/S0377-2217(03)00015-8.

[23]

X. ZhangJ. Wang and T. V. Do, Threshold properties of the M/M/1 queue under T-policy with applications, Applied Mathematics and Computation, 261 (2015), 284-301. doi: 10.1016/j.amc.2015.03.109.

show all references

References:
[1]

O. J. Boxma, Y. van der Wal and U. Yechiali, Polling with gated batch service, in: Proceedings of the Sixth International Conference on "Analysis of Manufacturing Systems", Lunteren, Netherlands, 2007,155-159.

[2]

O.J. BoxmaY. van der Wal and U. Yechiali, Polling with batch service, Stochastic Models, 24 (2008), 604-625. doi: 10.1080/15326340802427497.

[3]

J. D. Cordeiro and J. P. Kharoufeh, The unreliable M/M/1 retrial queue in a random environment, Stochastic Models, 28 (2012), 29-48. doi: 10.1080/15326349.2011.614478.

[4]

Y. Dimitrakopoulosa and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486. doi: 10.1016/j.ejor.2015.12.029.

[5]

E. H. Elhafsi and M. Molle, The solution to QBD processes with finite state space, Stochastic Analysis and Applications, 25 (2007), 763-779. doi: 10.1080/07362990701419946.

[6]

D. P. Heyman, The T policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.

[7]

P. Jayachitra and A. J. Albert, Recent developments in queueing models under N-policy: A short survey, International Journal of Mathematical Archive, 5 (2014), 227-233.

[8]

K. Kalidass and R. Kasturi, A queue with working breakdowns, Computers and Industrial Engineering, 63 (2012), 779-783. doi: 10.1016/j.cie.2012.04.018.

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadelphia, 1999.

[10]

Q. L. Li, Constructive Computation in Stochastic Models with Applications: the RG-Factorizations, Springer, Berlin and Tsinghua University Press, Beijing, 2010.

[11]

Z. MaP. Wang and W. Yue, Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations, Journal of Industrial and Management Optimization, 13 (2017), 1467-1481. doi: 10.3934/jimo.2017002.

[12]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: Algorithmic Approach, Johns Hopkins University Press, Baltimore, 1981.

[13]

N. Perel and U. Yechiali, The Israeli queue with priorities, Stochastic Models, 29 (2013), 353-379. doi: 10.1080/15326349.2013.808911.

[14]

N. Perel and U. Yechiali, The Israeli queue with infinite number of groups, Probability in the Engineering and Informational Sciences, 28 (2014), 1-19. doi: 10.1017/S0269964813000296.

[15]

N. Perel and U. Yechiali, The Israeli Queue with retrials, Queueing Systems, 78 (2014), 31-56. doi: 10.1007/s11134-013-9389-z.

[16]

N. Perel and U. Yechiali, The Israeli Queue with a general group-joining policy, Annals of Operations Research, (2015), 1-34. doi: 10.1007/s10479-015-1942-1.

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1WV), Performances Evaluation, 50 (2002), 41-52.

[18]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.

[19]

A. TirdadW. K. Grassmann and J. Tavakoli, Optimal policies of M(t)/M/c/c queues with two different levels of servers, European Journal of Operational Research, 249 (2016), 1124-1130. doi: 10.1016/j.ejor.2015.10.040.

[20]

Y. van der Wal and U. Yechiali, Dynamic visit-order rules for batch-service polling, Probability in the Engineering and Informational Sciences, 17 (2003), 351-367. doi: 10.1017/S0269964803173044.

[21]

T. Y. WangK. H. Wang and W. L. Pearn, Optimization of the T-policy M/G/1 queue with server breakdowns and general start up times, Journal of Computational and Applied Mathematics, 228 (2009), 270-278. doi: 10.1016/j.cam.2008.09.021.

[22]

Z. G. Zhang and N. Tian, An analysis of queueing systems with multi-task servers, European Journal of Operational Research, 156 (2004), 375-389. doi: 10.1016/S0377-2217(03)00015-8.

[23]

X. ZhangJ. Wang and T. V. Do, Threshold properties of the M/M/1 queue under T-policy with applications, Applied Mathematics and Computation, 261 (2015), 284-301. doi: 10.1016/j.amc.2015.03.109.

Figure 1.  $L_q$ versus $\lambda$ ($p = 0.6, \theta= 0.2, \mu_1=3$)
Figure 2.  $L_q$ versus $\mu_1$ ($\lambda=3, p = 0.6, \theta= 0.2, $)
Figure 3.  $L_q$ versus $p$ ($\lambda=3, \mu_1=3, \theta= 0.2, $)
Figure 4.  $L_q$ versus $p$ ($\lambda=3, \mu_1=3, p= 0.6, $)
[1]

Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2014.10.1191

[2]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2017024

[3]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2010.6.73

[4]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2013.9.885

[5]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2016068

[6]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2016077

[7]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by $(k,k)$-sparse matrix factorization. Inverse Problems & Imaging, doi: 10.3934/ipi.2017025

[8]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2016.12.1435

[9]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2017008

[10]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2014.10.57

[11]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2014.10.167

[12]

Jeongsim Kim, Bara Kim. Stability of a queue with discriminatory random order service discipline and heterogeneous servers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2016070

[13]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2010.6.929

[14]

Lixin Xu, Wanquan Liu. A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2005.1.389

[15]

Fei Cheng, Shanlin Yang, Ram Akella, Xiaoting Tang. An integrated approach for selection of service vendors in service supply chain. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2011.7.907

[16]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, doi: 10.3934/ipi.2015.9.601

[17]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, doi: 10.3934/mbe.2012.9.899

[18]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2011.7.811

[19]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2016.12.653

[20]

Naoto Miyoshi. On the stationary LCFS-PR single-server queue: A characterization via stochastic intensity. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2011.1.713

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]