doi: 10.3934/jimo.2017084

Solutions for bargaining games with incomplete information: General type space and action space

1. 

School of Business Administration, Hunan University, Changsha 410082, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

3. 

School of Economics and Management, Northwest University, Xi'an 710127, China

* Corresponding author

Received  March 2016 Revised  September 2016 Published  September 2017

Fund Project: This work has been supported by the National Natural Science Foundation of China under Projects Nos. 71210002 and 71671099. The authors are grateful to the anonymous referees for their constructive comments and suggestions

A Nash bargaining solution for Bayesian collective choice problem with general type and action spaces is built in this paper. Such solution generalizes the bargaining solution proposed by Myerson who uses finite sets to characterize the type and action spaces. However, in the real economics and industries, types and actions can hardly be characterized by a finite set in some circumstances. Hence our generalization expands the applications of bargaining theory in economic and industrial models.

Citation: Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2017084
References:
[1]

X. Brusset and P. J. Agrell, Intrinsic impediments to category captainship collaboration, Journal of Industrial and Management Optimization, 13 (2017), 113-133. doi: 10.3934/jimo.2016007.

[2]

W. S. ChangB. Chen and T. C. Salmon, An investigation of the average bid mechanism for procurement auctions, Management Science, 61 (2015), 1237-1254. doi: 10.1287/mnsc.2013.1893.

[3]

J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Science, 18 (1972), 80-106. doi: 10.1287/mnsc.18.5.80.

[4]

B. Holmström and R. B. Myerson, Efficient and durable decision rules with incomplete information, Econometrica, 51 (1983), 1799-1819.

[5]

M. HuangX. QianS. C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200. doi: 10.1016/j.omega.2015.06.007.

[6]

E. Kalai and M. Smorodinsky, Other solutions to Nash's bargaining problem, Econometrica, 43 (1975), 513-518. doi: 10.2307/1914280.

[7]

T. Kruse and P. Strack, Optimal stopping with private information, Journal of Economic Theory, 159 (2015), 702-727. doi: 10.1016/j.jet.2015.03.001.

[8]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73. doi: 10.2307/1912346.

[9]

R. B. Myerson, Cooperative games with imcomplete information, International Journal of Game Theory, 13 (1984), 69-96. doi: 10.1007/BF01769817.

[10]

R. B. Myerson, Two-person bargaining problems with incomplete information, Econometrica, 52 (1984), 461-487. doi: 10.2307/1911499.

[11]

J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162. doi: 10.2307/1907266.

[12]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.

[13]

M. A. Perles and M. Maschler, The super-additive solution for the Nash bargaining game, International Journal of Game Theory, 10 (1981), 163-193. doi: 10.1007/BF01755963.

[14] H. L. Royden and P. Fitzpatrick, Real Analysis, 3$^{ed}$ edition, Macmillan, New York, 1988.
[15]

F. Weidner, The generalized Nash bargaining solution and incentive compatible mechanisms, International Journal of Game Theory, 21 (1992), 109-129. doi: 10.1007/BF01245455.

show all references

References:
[1]

X. Brusset and P. J. Agrell, Intrinsic impediments to category captainship collaboration, Journal of Industrial and Management Optimization, 13 (2017), 113-133. doi: 10.3934/jimo.2016007.

[2]

W. S. ChangB. Chen and T. C. Salmon, An investigation of the average bid mechanism for procurement auctions, Management Science, 61 (2015), 1237-1254. doi: 10.1287/mnsc.2013.1893.

[3]

J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Science, 18 (1972), 80-106. doi: 10.1287/mnsc.18.5.80.

[4]

B. Holmström and R. B. Myerson, Efficient and durable decision rules with incomplete information, Econometrica, 51 (1983), 1799-1819.

[5]

M. HuangX. QianS. C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200. doi: 10.1016/j.omega.2015.06.007.

[6]

E. Kalai and M. Smorodinsky, Other solutions to Nash's bargaining problem, Econometrica, 43 (1975), 513-518. doi: 10.2307/1914280.

[7]

T. Kruse and P. Strack, Optimal stopping with private information, Journal of Economic Theory, 159 (2015), 702-727. doi: 10.1016/j.jet.2015.03.001.

[8]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73. doi: 10.2307/1912346.

[9]

R. B. Myerson, Cooperative games with imcomplete information, International Journal of Game Theory, 13 (1984), 69-96. doi: 10.1007/BF01769817.

[10]

R. B. Myerson, Two-person bargaining problems with incomplete information, Econometrica, 52 (1984), 461-487. doi: 10.2307/1911499.

[11]

J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162. doi: 10.2307/1907266.

[12]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.

[13]

M. A. Perles and M. Maschler, The super-additive solution for the Nash bargaining game, International Journal of Game Theory, 10 (1981), 163-193. doi: 10.1007/BF01755963.

[14] H. L. Royden and P. Fitzpatrick, Real Analysis, 3$^{ed}$ edition, Macmillan, New York, 1988.
[15]

F. Weidner, The generalized Nash bargaining solution and incentive compatible mechanisms, International Journal of Game Theory, 21 (1992), 109-129. doi: 10.1007/BF01245455.

[1]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2011.30.219

[2]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.1998.4.379

[3]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, doi: 10.3934/proc.2013.2013.159

[4]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2016008

[5]

Yoshitsugu Kabeya. A unified approach to Matukuma type equations on the hyperbolic space or on a sphere. Conference Publications, doi: 10.3934/proc.2013.2013.385

[6]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, doi: 10.3934/proc.2007.2007.28

[7]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2014.34.2261

[8]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2016.36.1061

[9]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2014.13.511

[10]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2011.10.1225

[11]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, doi: 10.3934/eect.2017012

[12]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, doi: 10.3934/mbe.2006.3.571

[13]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2013.12.663

[14]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, doi: 10.3934/proc.2011.2011.707

[15]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2014.13.307

[16]

Giovanna Bonfanti, Fabio Luterotti. Global solution to a phase transition model with microscopic movements and accelerations in one space dimension. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2006.5.763

[17]

Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2015.14.2169

[18]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2016020

[19]

Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2016.36.3775

[20]

Ran Zhuo, Fengquan Li, Boqiang Lv. Liouville type theorems for Schrödinger system with Navier boundary conditions in a half space. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2014.13.977

2016 Impact Factor: 0.994

Article outline

[Back to Top]