# American Institute of Mathematical Sciences

April  2019, 15(2): 577-593. doi: 10.3934/jimo.2018058

## An uncertain programming model for single machine scheduling problem with batch delivery

 School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

* Corresponding author: Yuanguo Zhu

Received  August 2017 Revised  January 2018 Published  April 2018

A single machine scheduling problem with batch delivery is studied in this paper. The objective is to minimize the total cost which comprises earliness penalties, tardiness penalties, holding and transportation costs. An integer programming model is proposed and two dominance properties are obtained. However, sometimes due to the lack of historical data, the worker evaluates the processing time of a job according to his past experience. A pessimistic value model of the single machine scheduling problem with batch delivery under an uncertain environment is presented. Since the objective function is non-monotonic with respect to uncertain variables, a hybrid algorithm based on uncertain simulation and a g#enetic algorithm (GA) is designed to solve the model. In addition, two dominance properties under the uncertain environment are also obtained. Finally, computational experiments are presented to illustrate the modeling idea and the effectiveness of the algorithm.

Citation: Jiayu Shen, Yuanguo Zhu. An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial & Management Optimization, 2019, 15 (2) : 577-593. doi: 10.3934/jimo.2018058
##### References:

show all references

##### References:
An example of crossover
An example of mutation
The sensitivity of the solution with respect to the confidence level
List of notations
 notations definitions $i=1, 2, ..., n$ the index of job $j=1, 2, ...$ the index of position $b=1, 2, ...$ the index of batch $l=1, 2, ...$, K the index of customer $n_{l}$ the number of jobs of customer $l$, l=1, 2, ..., K $p_i$ processing time of job $i$, i=1, 2, ..., n $[d^{s}_{i}, d^{t}_{i}]$ due window of job $i$, i=1, 2, ..., n $\alpha_i$ unit earliness penalty cost of job $i$, i=1, 2, ..., n $\beta_i$ unit tardiness penalty cost of job $i$, i=1, 2, ..., n $h_i$ unit holding cost of job $i$, i=1, 2, ..., n $D_l$ transportation cost of customer $l$, l=1, 2, ..., K $C_i$ completion time of job $i$, i=1, 2, ..., n $T_j$ completion time of the $j$th job on machine}, j=1, 2, ... $R_i$ delivery date of job $i$, i=1, 2, ..., n $R^{'}_{lb}$ delivery date of the $b$th batch of customer $l$, l=1, 2, ..., K; b=1, 2, ...
 notations definitions $i=1, 2, ..., n$ the index of job $j=1, 2, ...$ the index of position $b=1, 2, ...$ the index of batch $l=1, 2, ...$, K the index of customer $n_{l}$ the number of jobs of customer $l$, l=1, 2, ..., K $p_i$ processing time of job $i$, i=1, 2, ..., n $[d^{s}_{i}, d^{t}_{i}]$ due window of job $i$, i=1, 2, ..., n $\alpha_i$ unit earliness penalty cost of job $i$, i=1, 2, ..., n $\beta_i$ unit tardiness penalty cost of job $i$, i=1, 2, ..., n $h_i$ unit holding cost of job $i$, i=1, 2, ..., n $D_l$ transportation cost of customer $l$, l=1, 2, ..., K $C_i$ completion time of job $i$, i=1, 2, ..., n $T_j$ completion time of the $j$th job on machine}, j=1, 2, ... $R_i$ delivery date of job $i$, i=1, 2, ..., n $R^{'}_{lb}$ delivery date of the $b$th batch of customer $l$, l=1, 2, ..., K; b=1, 2, ...
Results for small scale
 No GA HGA min max time(s) min max time(s) 1 3079 3361 356 3125 3349 301 2 2953 3415 338 2837 3437 312 3 2556 2889 313 2398 2735 263 4 3582 3764 359 3619 3923 329 5 2046 2358 271 2098 2491 254
 No GA HGA min max time(s) min max time(s) 1 3079 3361 356 3125 3349 301 2 2953 3415 338 2837 3437 312 3 2556 2889 313 2398 2735 263 4 3582 3764 359 3619 3923 329 5 2046 2358 271 2098 2491 254
Results for mesoscale
 No GA HGA min max time(s) min max time(s) 1 8466 8893 1603 8501 8697 1354 2 9320 9671 1754 9455 9612 1340 3 8323 8569 1625 8361 8538 1385 4 8736 9028 1701 8798 9110 1313 5 7954 8077 1590 7839 8154 1397
 No GA HGA min max time(s) min max time(s) 1 8466 8893 1603 8501 8697 1354 2 9320 9671 1754 9455 9612 1340 3 8323 8569 1625 8361 8538 1385 4 8736 9028 1701 8798 9110 1313 5 7954 8077 1590 7839 8154 1397
Results for large scale
 No GA HGA min max time(s) min max time(s) 1 21542 22634 8655 21696 21873 6320 2 19556 21391 8367 19374 20065 5966 3 21406 23767 8961 21250 22034 6257 4 21973 23891 9058 21630 22741 6299 5 20592 22378 8537 20063 20097 6035
 No GA HGA min max time(s) min max time(s) 1 21542 22634 8655 21696 21873 6320 2 19556 21391 8367 19374 20065 5966 3 21406 23767 8961 21250 22034 6257 4 21973 23891 9058 21630 22741 6299 5 20592 22378 8537 20063 20097 6035
Average relative percentage errors of GA and HGA
 $n$ GA HGA $20$ $0.06266$ $0.05713$ $50$ $0.03316$ $0.02685$ $100$ $0.01295$ $0.007372$ $200$ $0.005723$ $0.004993$ Average $0.028623$ $0.024086$
 $n$ GA HGA $20$ $0.06266$ $0.05713$ $50$ $0.03316$ $0.02685$ $100$ $0.01295$ $0.007372$ $200$ $0.005723$ $0.004993$ Average $0.028623$ $0.024086$
 [1] Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259 [2] Ganggang Li, Xiwen Lu, Peihai Liu. The coordination of single-machine scheduling with availability constraints and delivery. Journal of Industrial & Management Optimization, 2016, 12 (2) : 757-770. doi: 10.3934/jimo.2016.12.757 [3] Yunqiang Yin, T. C. E. Cheng, Jianyou Xu, Shuenn-Ren Cheng, Chin-Chia Wu. Single-machine scheduling with past-sequence-dependent delivery times and a linear deterioration. Journal of Industrial & Management Optimization, 2013, 9 (2) : 323-339. doi: 10.3934/jimo.2013.9.323 [4] Chengxin Luo. Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 71-77. doi: 10.3934/naco.2015.5.71 [5] Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial & Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 [6] Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1921-1936. doi: 10.3934/jimo.2018129 [7] Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial & Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719 [8] Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial & Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825 [9] Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial & Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040 [10] Muminu O. Adamu, Aderemi O. Adewumi. A survey of single machine scheduling to minimize weighted number of tardy jobs. Journal of Industrial & Management Optimization, 2014, 10 (1) : 219-241. doi: 10.3934/jimo.2014.10.219 [11] Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 [12] Muberra Allahverdi, Ali Allahverdi. Minimizing total completion time in a two-machine no-wait flowshop with uncertain and bounded setup times. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019062 [13] Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017 [14] Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019057 [15] Chuanli Zhao, Yunqiang Yin, T. C. E. Cheng, Chin-Chia Wu. Single-machine scheduling and due date assignment with rejection and position-dependent processing times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 691-700. doi: 10.3934/jimo.2014.10.691 [16] Peng Guo, Wenming Cheng, Yi Wang. A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1071-1090. doi: 10.3934/jimo.2014.10.1071 [17] Hongwei Li, Yuvraj Gajpal, C. R. Bector. A survey of due-date related single-machine with two-agent scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019005 [18] Ping Yan, Ji-Bo Wang, Li-Qiang Zhao. Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1117-1131. doi: 10.3934/jimo.2018088 [19] Xingong Zhang. Single machine and flowshop scheduling problems with sum-of-processing time based learning phenomenon. Journal of Industrial & Management Optimization, 2020, 16 (1) : 231-244. doi: 10.3934/jimo.2018148 [20] Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial & Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685

2018 Impact Factor: 1.025