American Institute of Mathematical Sciences

January  2020, 16(1): 25-36. doi: 10.3934/jimo.2018138

Continuity of solutions mappings of parametric set optimization problems

 1 School of Mathematics and Statistics, Southwest University, Chongqing 400715, China 2 School of Economics and Management, China University of Geosciences, Wuhan 430074, China 3 College of Management, Chongqing College of Humanities, Science & Technology, Chongqing 401524, China 4 School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

* Corresponding author: Jiawei Chen

Received  December 2016 Revised  November 2017 Published  September 2018

Fund Project: This research is supported by the Natural Science Foundation of China (Nos: 11571055, 11401487, 71471167), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0239, cstc2015jcyjBX0131), the China Postdoctoral Science Foundation (No: 2015M582512) and the Fundamental Research Funds for the Central Universities.

Set optimization is an indispensable part of theory and method of optimization, and has been received wide attentions due to its extensive applications in group decision and group game problems. This paper focus on the continuity of the strict (weak) minimal solution set mapping of parametric set-valued vector optimization problems with the lower set less order relation. We firstly introduce a concept of strict lower level mapping of parametric set-valued vector optimization problems. Moreover, the upper and lower semicontinuity of the strict lower level mapping are obtained under some suitable conditions. Lastly, the sufficient condition for the continuity of the strict minimal solution set mappings of parametric set optimization problems are established by a new proof method, which is different from that in [27,28].

Citation: Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2020, 16 (1) : 25-36. doi: 10.3934/jimo.2018138
References:
 [1] M. Alonso and L. Rodríguez-Marín, Optimality conditions for set-valued maps with set optimization, Nonlinear Anal., 70 (2009), 3057-3064.  doi: 10.1016/j.na.2008.04.027.  Google Scholar [2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley. New York, 1984.  Google Scholar [3] J. W. Chen, Q. H. Ansari and J. C. Yao, Characterizations of set order relations and constrained set optimization problems, Optim., 66 (2017), 1741-1754.  doi: 10.1080/02331934.2017.1322082.  Google Scholar [4] J. W. Chen, E. Köbis, M. Köbis and J. C. Yao, A new set order relation in set optimization, J. Nonlinear Convex Anal., 18 (2017), 637-649.   Google Scholar [5] M. Dhingra and C. S. Lalitha, Well-setness and scalarization in set optimization, Optim. Lett., 10 (2016), 1657-1667.  doi: 10.1007/s11590-015-0942-z.  Google Scholar [6] A. Göfert, Chr. Tammer, H. Riahi and C. Z$\check{a}$inescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.  Google Scholar [7] C. Gutiérrez, B. Jiménez, E. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2014), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar [8] C. Gutiérrez, E. Miglierina, E. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar [9] A. H. Hamel and A. Löne, Lagrange duality in set optimization, J. Optim. Theory Appl., 161 (2014), 368-397.  doi: 10.1007/s10957-013-0431-4.  Google Scholar [10] E. Hernández and L. Rodríguez-Marín, Existence theorems for set optimization problem, Nonlinear Anal., 67 (2007), 1726-1736.  doi: 10.1016/j.na.2006.08.013.  Google Scholar [11] E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.  doi: 10.1016/j.jmaa.2006.01.033.  Google Scholar [12] N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar [13] J. Jahn, A derivative-free descent method in set optimization, Comput. Optim. Appl., 60 (2015), 393-411.  doi: 10.1007/s10589-014-9674-8.  Google Scholar [14] J. Jahn and T. X. D. Ha, New set relations in set optimization, J. Optim. Theory Appl., 148 (2011), 209-236.  doi: 10.1007/s10957-010-9752-8.  Google Scholar [15] A. A. Khan, C. Tammer and C. Z$\check{a}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, New York, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar [16] S. Khoshkhabar-amiranloo and E. Khorram, Pointwise well-posedness and scalarization in set optimization, Math. Meth. Oper. Res., 82 (2015), 195-210.  doi: 10.1007/s00186-015-0509-x.  Google Scholar [17] B. T. Kien, On the lower semicontinuity of optimal solution sets, Optim., 54 (2005), 123-130.  doi: 10.1080/02331930412331330379.  Google Scholar [18] D. Klatte, A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities, Math. Program. Stud., 21 (1984), 139-149.   Google Scholar [19] D. Kuroiwa, Some duality theorems of set-valued optimization with natural critera, In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, 221-228. World Scientific, RiverEdge, 1999.  Google Scholar [20] D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.  doi: 10.1016/S0362-546X(01)00274-7.  Google Scholar [21] S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar [22] S. J. Li and C. R. Chen, Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.  doi: 10.1016/j.na.2008.02.032.  Google Scholar [23] S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar [24] X. J. Long and J. W. Peng, Generalized B-well-posedness for set optimization problems, J. Optim. Theory Appl., 157 (2013), 612-623.  doi: 10.1007/s10957-012-0205-4.  Google Scholar [25] J. Liu, J. W. Chen, W. Y. Zhang and C. F. Wen, Scalarization and pointwise Levitin-Polyak well-posedness for set optimization problems, J. Nonlinear Convex Anal., 18 (2017), 1023-1040.   Google Scholar [26] Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar [27] Y. D. Xu and S. J. Li, Continuity of the solution set mappings to a parametric set optimization problem, Optim. Lett., 8 (2014), 2315-2327.  doi: 10.1007/s11590-014-0738-6.  Google Scholar [28] Y. D. Xu and S. J. Li, On the solution continuity of parametric set optimization problems, Math. Meth. Oper. Res., 84 (2016), 223-237.  doi: 10.1007/s00186-016-0541-5.  Google Scholar [29] W. Y. Zhang, S. J. Li and K. L. Teo, Well-posedness for set optimization problems, Nonlinear Anal., 71 (2009), 3769-3778.  doi: 10.1016/j.na.2009.02.036.  Google Scholar [30] J. Zhao, The lower semicontinuity of optimal solution sets, J. Math. Anal. Appl., 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

show all references

References:
 [1] M. Alonso and L. Rodríguez-Marín, Optimality conditions for set-valued maps with set optimization, Nonlinear Anal., 70 (2009), 3057-3064.  doi: 10.1016/j.na.2008.04.027.  Google Scholar [2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley. New York, 1984.  Google Scholar [3] J. W. Chen, Q. H. Ansari and J. C. Yao, Characterizations of set order relations and constrained set optimization problems, Optim., 66 (2017), 1741-1754.  doi: 10.1080/02331934.2017.1322082.  Google Scholar [4] J. W. Chen, E. Köbis, M. Köbis and J. C. Yao, A new set order relation in set optimization, J. Nonlinear Convex Anal., 18 (2017), 637-649.   Google Scholar [5] M. Dhingra and C. S. Lalitha, Well-setness and scalarization in set optimization, Optim. Lett., 10 (2016), 1657-1667.  doi: 10.1007/s11590-015-0942-z.  Google Scholar [6] A. Göfert, Chr. Tammer, H. Riahi and C. Z$\check{a}$inescu, Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.  Google Scholar [7] C. Gutiérrez, B. Jiménez, E. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2014), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar [8] C. Gutiérrez, E. Miglierina, E. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar [9] A. H. Hamel and A. Löne, Lagrange duality in set optimization, J. Optim. Theory Appl., 161 (2014), 368-397.  doi: 10.1007/s10957-013-0431-4.  Google Scholar [10] E. Hernández and L. Rodríguez-Marín, Existence theorems for set optimization problem, Nonlinear Anal., 67 (2007), 1726-1736.  doi: 10.1016/j.na.2006.08.013.  Google Scholar [11] E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.  doi: 10.1016/j.jmaa.2006.01.033.  Google Scholar [12] N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar [13] J. Jahn, A derivative-free descent method in set optimization, Comput. Optim. Appl., 60 (2015), 393-411.  doi: 10.1007/s10589-014-9674-8.  Google Scholar [14] J. Jahn and T. X. D. Ha, New set relations in set optimization, J. Optim. Theory Appl., 148 (2011), 209-236.  doi: 10.1007/s10957-010-9752-8.  Google Scholar [15] A. A. Khan, C. Tammer and C. Z$\check{a}$linescu, Set-Valued Optimization: An Introduction with Applications, Springer, New York, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar [16] S. Khoshkhabar-amiranloo and E. Khorram, Pointwise well-posedness and scalarization in set optimization, Math. Meth. Oper. Res., 82 (2015), 195-210.  doi: 10.1007/s00186-015-0509-x.  Google Scholar [17] B. T. Kien, On the lower semicontinuity of optimal solution sets, Optim., 54 (2005), 123-130.  doi: 10.1080/02331930412331330379.  Google Scholar [18] D. Klatte, A sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities, Math. Program. Stud., 21 (1984), 139-149.   Google Scholar [19] D. Kuroiwa, Some duality theorems of set-valued optimization with natural critera, In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, 221-228. World Scientific, RiverEdge, 1999.  Google Scholar [20] D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.  doi: 10.1016/S0362-546X(01)00274-7.  Google Scholar [21] S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar [22] S. J. Li and C. R. Chen, Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.  doi: 10.1016/j.na.2008.02.032.  Google Scholar [23] S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar [24] X. J. Long and J. W. Peng, Generalized B-well-posedness for set optimization problems, J. Optim. Theory Appl., 157 (2013), 612-623.  doi: 10.1007/s10957-012-0205-4.  Google Scholar [25] J. Liu, J. W. Chen, W. Y. Zhang and C. F. Wen, Scalarization and pointwise Levitin-Polyak well-posedness for set optimization problems, J. Nonlinear Convex Anal., 18 (2017), 1023-1040.   Google Scholar [26] Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar [27] Y. D. Xu and S. J. Li, Continuity of the solution set mappings to a parametric set optimization problem, Optim. Lett., 8 (2014), 2315-2327.  doi: 10.1007/s11590-014-0738-6.  Google Scholar [28] Y. D. Xu and S. J. Li, On the solution continuity of parametric set optimization problems, Math. Meth. Oper. Res., 84 (2016), 223-237.  doi: 10.1007/s00186-016-0541-5.  Google Scholar [29] W. Y. Zhang, S. J. Li and K. L. Teo, Well-posedness for set optimization problems, Nonlinear Anal., 71 (2009), 3769-3778.  doi: 10.1016/j.na.2009.02.036.  Google Scholar [30] J. Zhao, The lower semicontinuity of optimal solution sets, J. Math. Anal. Appl., 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar
The strict $K$-quasiconvexity of $F(\cdot,\lambda)$ with $\lambda = 0.1$
 [1] Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 [2] Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507 [3] Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179 [4] Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019102 [5] Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 [6] Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 [7] Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019 [8] Hong-Zhi Wei, Chun-Rong Chen. Three concepts of robust efficiency for uncertain multiobjective optimization problems via set order relations. Journal of Industrial & Management Optimization, 2019, 15 (2) : 705-721. doi: 10.3934/jimo.2018066 [9] Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051 [10] Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1399-1406. doi: 10.3934/mbe.2017072 [11] Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177 [12] S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305 [13] Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89 [14] Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012 [15] Olivier Guibé, Anna Mercaldo. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Communications on Pure & Applied Analysis, 2008, 7 (1) : 163-192. doi: 10.3934/cpaa.2008.7.163 [16] Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure & Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587 [17] Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759 [18] Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 [19] Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989 [20] Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure & Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929

2018 Impact Factor: 1.025