January  2020, 16(1): 387-396. doi: 10.3934/jimo.2018158

Option pricing formulas for generalized fuzzy stock model

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

* Corresponding author: Cuilian You

Received  June 2018 Revised  June 2018 Published  September 2018

Fund Project: The first author is supported by NSFC grant (No.61773150) and Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.

Fuzzy stock model has been studied by many scholars in recent years, in which option pricing problem is the most important part. In this paper, we studied option pricing for a new generalized fuzzy stock model. Based on credibility theory, pricing formulas of European option and American option were obtained.

Citation: Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158
References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[2]

X. Chen and Z. Qin, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process\/071110.pdf. Google Scholar

[4]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process\/080831.pdf. Google Scholar

[5]

Z. DingM. Ma and A. Kandel, Exsitence of the solutions of fuzzy differential equations with parameters, Information Sciences, 99 (1999), 205-217.  doi: 10.1016/S0020-0255(96)00279-4.  Google Scholar

[6]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 2 (2008), 243-247.   Google Scholar

[7]

X. Gao and X. Chen, Option pricing formula for generalized stock models, 2008. Available from: http://orsc.edu.cn/process/080317.pdf. Google Scholar

[8]

H. Hu, Power option pricing model for stock price follow geometric fractional Liu process, Journal of Henan Normal University (Natural Science Edition), 41 (2013), 1-5.   Google Scholar

[9]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.  Google Scholar

[10]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[11]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[12]

R. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.  Google Scholar

[13]

J. Peng, A general stock model for fuzzy markets, Journal of Uncertain Systems, 2 (2008), 248-254.   Google Scholar

[14]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain System, 2 (2008), 17-21.   Google Scholar

[15]

Z. Qin and X. Li, Fuzzy calculus for finance, 2008. Available from: http://orsc.edu.cn/process\/fc.pdf. Google Scholar

[16]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 9 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University (Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[19]

C. YouW. Wang and H. Huo, Existence and unqiueness theorems for fuzzy differential equation, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

show all references

References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[2]

X. Chen and Z. Qin, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.   Google Scholar

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process\/071110.pdf. Google Scholar

[4]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process\/080831.pdf. Google Scholar

[5]

Z. DingM. Ma and A. Kandel, Exsitence of the solutions of fuzzy differential equations with parameters, Information Sciences, 99 (1999), 205-217.  doi: 10.1016/S0020-0255(96)00279-4.  Google Scholar

[6]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 2 (2008), 243-247.   Google Scholar

[7]

X. Gao and X. Chen, Option pricing formula for generalized stock models, 2008. Available from: http://orsc.edu.cn/process/080317.pdf. Google Scholar

[8]

H. Hu, Power option pricing model for stock price follow geometric fractional Liu process, Journal of Henan Normal University (Natural Science Edition), 41 (2013), 1-5.   Google Scholar

[9]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.  Google Scholar

[10]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[11]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.   Google Scholar

[12]

R. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.  Google Scholar

[13]

J. Peng, A general stock model for fuzzy markets, Journal of Uncertain Systems, 2 (2008), 248-254.   Google Scholar

[14]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain System, 2 (2008), 17-21.   Google Scholar

[15]

Z. Qin and X. Li, Fuzzy calculus for finance, 2008. Available from: http://orsc.edu.cn/process\/fc.pdf. Google Scholar

[16]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.  Google Scholar

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 9 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.  Google Scholar

[18]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University (Natural Science Edition), 31 (2011), 337-340.   Google Scholar

[19]

C. YouW. Wang and H. Huo, Existence and unqiueness theorems for fuzzy differential equation, Journal of Uncertain Systems, 7 (2013), 303-315.   Google Scholar

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (144)
  • HTML views (845)
  • Cited by (0)

Other articles
by authors

[Back to Top]