• Previous Article
    An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme
May  2020, 16(3): 1135-1148. doi: 10.3934/jimo.2018196

Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority

School of Science, Yanshan University, Qinhuangdao 066004, China

*Corresponding author

Received  October 2017 Revised  April 2018 Published  December 2018

In this paper, we introduce a discrete time Geo/Geo/1 queue system with non-preemptive priority and multiple working vacations. We assume that there are two types of customers in this queue system named "Customers of type-Ⅰ" and "Customers of type-Ⅱ". Customer of type-Ⅱ has a higher priority with non-preemption than Customer of type-Ⅰ. By building a discrete time four-dimensional Markov Chain which includes the numbers of customers with different priorities in the system, the state of the server and the service state, we obtain the state transition probability matrix. Using a birth-and-death chain and matrix-geometric method, we deduce the average queue length, the average waiting time of the two types of customers, and the average busy period of the system. Then, we provide some numerical results to evaluate the effect of the parameters on the system performance. Finally, we develop some benefit functions to analyse both the personal and social benefit, and obtain some optimization results within a certain range.

Citation: Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1135-1148. doi: 10.3934/jimo.2018196
References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X.  Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53.   Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172.  doi: 10.1016/j.ejor.2007.09.021.  Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988.   Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218.   Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506.   Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014.  Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048.  Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106.  Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.   Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12.   Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395.  doi: 10.1007/s11134-015-9460-z.  Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539.   Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200.  Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672.   Google Scholar

show all references

References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X.  Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53.   Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172.  doi: 10.1016/j.ejor.2007.09.021.  Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988.   Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218.   Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506.   Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014.  Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048.  Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106.  Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.   Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12.   Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395.  doi: 10.1007/s11134-015-9460-z.  Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012.  Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539.   Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200.  Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672.   Google Scholar

Figure 1.  Schematic illustration for the service process of the non-preemptive priority queue
Figure 2.  Schematic diagram for the model description
Figure 3.  Relation of $ E(L_1) $ with $ \lambda $ and $ \alpha $
Figure 4.  Relation of $ E(L_2) $ with $ \lambda $ and $ \alpha $
Figure 5.  Relation of $ E(L) $ with $ \theta $ and $ \mu_1 $
Figure 6.  Relation of $ E(B) $ with $ \mu _1 $ and $ \mu_2 $
Figure 7.  Relation of $ B_1 $ with $ \lambda $ and $ \alpha $
Figure 8.  Relation of $ B_2 $ with $ \lambda $ and $ \alpha $
Figure 9.  Relation of $ D $ with $ \mu _1 $ and $ \alpha $
Figure 10.  Relation of $ D $ with $ \lambda $ and $ \alpha $
Table 1.  Relation of $ E(W_1) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
Table 2.  Relation of $ E(W_2) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[2]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[3]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[9]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[10]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[11]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[18]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (141)
  • HTML views (830)
  • Cited by (0)

Other articles
by authors

[Back to Top]