• Previous Article
    Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of the queue lengths in a priority retrial queue with constant retrial policy
doi: 10.3934/jimo.2018196

Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority

School of Science, Yanshan University, Qinhuangdao 066004, China

*Corresponding author

Received  October 2017 Revised  April 2018 Published  December 2018

In this paper, we introduce a discrete time Geo/Geo/1 queue system with non-preemptive priority and multiple working vacations. We assume that there are two types of customers in this queue system named "Customers of type-Ⅰ" and "Customers of type-Ⅱ". Customer of type-Ⅱ has a higher priority with non-preemption than Customer of type-Ⅰ. By building a discrete time four-dimensional Markov Chain which includes the numbers of customers with different priorities in the system, the state of the server and the service state, we obtain the state transition probability matrix. Using a birth-and-death chain and matrix-geometric method, we deduce the average queue length, the average waiting time of the two types of customers, and the average busy period of the system. Then, we provide some numerical results to evaluate the effect of the parameters on the system performance. Finally, we develop some benefit functions to analyse both the personal and social benefit, and obtain some optimization results within a certain range.

Citation: Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018196
References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X. Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53. Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172. doi: 10.1016/j.ejor.2007.09.021. Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988. Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218. Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506. Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014. Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048. Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734. Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106. Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981. Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12. Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395. doi: 10.1007/s11134-015-9460-z. Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012. Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539. Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731. doi: 10.3934/jimo.2015.11.715. Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200. Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672. Google Scholar

show all references

References:
[1]

P. Bocharov, O. Pavlova and D. Puzikova, M/G/1/r retrial queueing systems with priority of primary customers, Mathematical and Computer Modelling, 30 (1999), 89-98. doi: 10.1016/S0895-7177(99)00134-X. Google Scholar

[2]

Y. DengQ. Wu and Z. Li, Priority queues with threshold switching and setup time, Operations Research Transactions, 4 (2000), 41-53. Google Scholar

[3]

W. Feng and M. Umemura, Analysis of a finite buffer model with two servers and two nonpreemptive priority classes, European Journal of Operational Research, 192 (2009), 151-172. doi: 10.1016/j.ejor.2007.09.021. Google Scholar

[4]

F. Kamoun, Performance analysis of a non-preemptive priority queuing system subjected to a correlated markovian interruption process, Operations Research, 35 (2008), 3969-3988. Google Scholar

[5]

E. Kao and K. Narayanan, Computing steady-state probabilities of a nonpreemptive priority multiserver queue, ORSA Journal on Computing, 2 (1990), 211-218. Google Scholar

[6]

T. Katayama and K. Kobayashi, Analysis of a nonpreemptive priority queue with exponential timer and server vacations, Performance Evaluation, 64 (2007), 495-506. Google Scholar

[7]

O. Kella and U. Yechiali, Waiting times in the non-preemptive priority M/M/c queue, Communications in Statistics. Part C: Stochastic Models, 1 (1985), 257-262. doi: 10.1080/15326348508807014. Google Scholar

[8]

A. Krishnamoorthy, S. Babu and V. Narayanan, The MAP/(PH/PH)/1 queue with self-generation of priorities and non-preemptive service, European Journal of Operational Research, 195 (2009), 174-185. doi: 10.1016/j.ejor.2008.01.048. Google Scholar

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999. doi: 10.1137/1.9780898719734. Google Scholar

[10]

K. Madan, A non-preemptive priority queueing system with a single server serving two queues M/G/1 and M/D/1 with optional server vacations based on exhaustive service of the priority units, Applied Mathematics, 2 (2011), 791-799. doi: 10.4236/am.2011.26106. Google Scholar

[11] M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981. Google Scholar
[12]

D. Pandey and A. Pal, Delay analysis of a discrete-time non-preemptive priority queue with priority jumps, Applied Mathematics, 9 (2014), 1-12. Google Scholar

[13]

A. SleptvhenkoJ. SelenI. Adan and G. J. Houtum, Joint queue length distribution of multi-class, single-server queues with preemptive priorities, Queueing Systems, 81 (2015), 379-395. doi: 10.1007/s11134-015-9460-z. Google Scholar

[14]

W. Sun, P. Guo, N. Tian and S. Li, Relative priority policies for minimizing the cost of queueing systems with service discrimination, Applied Mathematical Modelling, 33 (2009), 4241-4258. doi: 10.1016/j.apm.2009.03.012. Google Scholar

[15]

A. M. K. Tarabia, Two-class priority queuing system with restricted number of priority customers, AEU - International Journal of Electronics and Communications, 61 (2007), 534-539. Google Scholar

[16]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731. doi: 10.3934/jimo.2015.11.715. Google Scholar

[17]

R. Wang and W. Long, Weak convergence theorems for multiserver queueing system in nonpreemptive priority displine, Acta Mathematicae Applicatae Sinica, 17 (1994), 192-200. Google Scholar

[18]

G. ZhaoY. Chen and X. Xue, M/M/1 queue under nonpreemptive priority, College Mathematics, 22 (2006), 1454-1672. Google Scholar

Figure 1.  Schematic illustration for the service process of the non-preemptive priority queue
Figure 2.  Schematic diagram for the model description
Figure 3.  Relation of $ E(L_1) $ with $ \lambda $ and $ \alpha $
Figure 4.  Relation of $ E(L_2) $ with $ \lambda $ and $ \alpha $
Figure 5.  Relation of $ E(L) $ with $ \theta $ and $ \mu_1 $
Figure 6.  Relation of $ E(B) $ with $ \mu _1 $ and $ \mu_2 $
Figure 7.  Relation of $ B_1 $ with $ \lambda $ and $ \alpha $
Figure 8.  Relation of $ B_2 $ with $ \lambda $ and $ \alpha $
Figure 9.  Relation of $ D $ with $ \mu _1 $ and $ \alpha $
Figure 10.  Relation of $ D $ with $ \lambda $ and $ \alpha $
Table 1.  Relation of $ E(W_1) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 4.7081 2.9925 2.1313 1.6271 1.3023 1.0787
0.50 2.5403 1.7894 1.3538 1.0748 0.8836 0.7459
0.55 1.7483 1.2914 1.0067 0.8156 0.6800 0.5797
Table 2.  Relation of $ E(W_2) $ with $ \mu _1 $ and $ \mu _2 $
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
$ \mu _2 $ $ \mu _1 =0.30 $ $ \mu _1 =0.32 $ $ \mu _1 =0.34 $ $ \mu _1 =0.36 $ $ \mu _1 =0.38 $ $ \mu _1 =0.40 $
0.45 3.6164 2.9022 2.3961 2.0311 1.7626 1.5610
0.50 2.4961 1.9948 1.6473 1.4001 1.2199 1.0853
0.55 1.8492 1.4802 1.2263 1.0464 0.9154 0.8175
[1]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[2]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[3]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[4]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[5]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[6]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[7]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[8]

Jian Zhao, Fang Deng, Jian Jia, Chunmeng Wu, Haibo Li, Yuan Shi, Shunli Zhang. A new face feature point matrix based on geometric features and illumination models for facial attraction analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1065-1072. doi: 10.3934/dcdss.2019073

[9]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[10]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[11]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[12]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[13]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[14]

Yoshiaki Kawase, Shoji Kasahara. Priority queueing analysis of transaction-confirmation time for Bitcoin. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018193

[15]

Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-30. doi: 10.3934/jimo.2019082

[16]

Yuan Zhao, Wuyi Yue. Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1449-1466. doi: 10.3934/jimo.2017001

[17]

Hao-Chun Lu. An efficient convexification method for solving generalized geometric problems. Journal of Industrial & Management Optimization, 2012, 8 (2) : 429-455. doi: 10.3934/jimo.2012.8.429

[18]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

[19]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[20]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

2018 Impact Factor: 1.025

Article outline

Figures and Tables

[Back to Top]