• Previous Article
    A smoothing SAA algorithm for a portfolio choice model based on second-order stochastic dominance measures
  • JIMO Home
  • This Issue
  • Next Article
    Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority
May  2020, 16(3): 1149-1169. doi: 10.3934/jimo.2018197

An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation

1. 

School of Information Science and Engineering, Yanshan University, Qinhuangdao, China

2. 

Hebei Normal University of Science and Technology, Qinhuangdao, China

3. 

Science and Technology on Communication Networks Laboratory, Shijiazhuang, China

*Corresponding author: Shunfu Jin

Received  October 2017 Revised  January 2018 Published  December 2018

Channel reservation strategy in CRNs is an effective technology for conserving communication resources. In this paper, using the imperfect sensing of secondary user (SU) packets, and considering the patience degree of SU packets, we propose a channel reservation strategy in a CRN. Aligned with the proposed channel reservation strategy, we establish a continuous-time Markov chain model to capture the stochastic behavior of the two types of user packets. Then, in order to obtain the steady-state probability distribution for the system model, we present a new algorithm for solving the quasi-birth-and-death (QBD) process. At last, based on the energy detection method, we evaluate the system performance in terms of the throughput of SU packets, the average latency of SU packets, the switching rate of SU packets and the channel utilization in relation to the energy detection threshold and the number of reserved channels.

Citation: Jianping Liu, Shunfu Jin. An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1149-1169. doi: 10.3934/jimo.2018197
References:
[1]

M. R. AbediN. MokariM. R. Javan and H. Yanikomeroglu, Secure communication in OFDMA-Based cognitive radio networks: An incentivized secondary network coexistence approach, IEEE Transactions on Vehicular Technology, 66 (2017), 1171-1185.   Google Scholar

[2]

S. Behera and D. Seth, Efficient resource allocation in cognitive radio network under imperfect spectrum sensing and unsecured environment, Proceedings of the IEEE International Conference on Electrical, Electronics, Signals, Communication and Optimization, (2015), 1-5. Google Scholar

[3]

T. Chakraborty and I. Misra, Design and analysis of channel reservation scheme in cognitive radio networks, Computer Electric Engeering, 42 (2015), 148-167.   Google Scholar

[4]

C. Guo, C. Feng and Z. Zeng, Cognitive Radio Network Technologies and Applications, Publishing House of Electronics Industry, Beijing, 2010 (in Chinese). Google Scholar

[5]

F. Hu and Y. Jin, Research on the selection of the optimal relaxation factor selection method for SOR method, Journal of Southwest Normal University, 33 (2008), 43-36.   Google Scholar

[6]

S. JinW. Yue and Sh iying Ge, Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results, Management Optimization, 13 (2017), 1255-1271.  doi: 10.3934/jimo.2016071.  Google Scholar

[7]

J. Liu, S. Jin and W. Yue, Performance evaluation and system optimization of green cognitive radio networks with amultiple-sleep mode, Annals of Operations Research, 2018, doi: 10.1007/s10479-018-3086-6.  Google Scholar

[8]

K. Muthumeenakshi and S. Radha, Distributed cognitive radio spectrum access with imperfect sensing using CTMC, International Journal of Distributed Sensor Networks, 2 (2013), 213-235.   Google Scholar

[9]

R. V. Rao and V. D. Kalyankar, Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm, Engineering Applications of Articial Intelligence, 26 (2013), 524-531.   Google Scholar

[10]

A. Rehman, L. Yang and L. Hanzo, Performance of cognitive hybrid automatic repeat request: Go-Back-N, Proceedings of the IEEE Vehicular Technology Conference, (2016), 1-5. Google Scholar

[11]

O. SalamehK. D. TurckH. BruneelC. Blondia and S. Wittevrongel, Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff, Telecommunication Systems, 65 (2017), 539-550.   Google Scholar

[12]

Z. SalamiM. Ahmadian-AttariH. Jannati and M. R. Aref, A location privacy-preserving method for spectrum sharing in database-driven cognitive radio networks, Wireless Personal Communications, 95 (2017), 3687-3711.   Google Scholar

[13]

S. WangZ. ZhouM. Ge and C. Wang, Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing, IEEE Journal on Selected Areas in Communications, 31 (2013), 464-475.   Google Scholar

[14]

R. XieF. Yu and H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing, IEEE Transactions on Vehicular Technology, 61 (2012), 770-780.   Google Scholar

[15]

C. XuM. ZhengW. LiangH. Yu and Y. C. Liang, End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting, IEEE Transactions on Wireless Communications, 16 (2017), 3561-3572.   Google Scholar

[16]

L. Zappaterra, J. Gomes, A. Arora and H. Choi, Resource discovery algorithms for channel aggregation in cognitive radio networks, Proceedings of the IEEE Wireless Communications and Networking Conference, (2013), 309-314. Google Scholar

[17]

Y. ZhaoS. Jin and W. Yue, An adjustable channel bonding strategy in centralized cognitive radio networks and its performance optimization, Quality Technology and Quantitative Management, 12 (2015), 291-310.   Google Scholar

show all references

References:
[1]

M. R. AbediN. MokariM. R. Javan and H. Yanikomeroglu, Secure communication in OFDMA-Based cognitive radio networks: An incentivized secondary network coexistence approach, IEEE Transactions on Vehicular Technology, 66 (2017), 1171-1185.   Google Scholar

[2]

S. Behera and D. Seth, Efficient resource allocation in cognitive radio network under imperfect spectrum sensing and unsecured environment, Proceedings of the IEEE International Conference on Electrical, Electronics, Signals, Communication and Optimization, (2015), 1-5. Google Scholar

[3]

T. Chakraborty and I. Misra, Design and analysis of channel reservation scheme in cognitive radio networks, Computer Electric Engeering, 42 (2015), 148-167.   Google Scholar

[4]

C. Guo, C. Feng and Z. Zeng, Cognitive Radio Network Technologies and Applications, Publishing House of Electronics Industry, Beijing, 2010 (in Chinese). Google Scholar

[5]

F. Hu and Y. Jin, Research on the selection of the optimal relaxation factor selection method for SOR method, Journal of Southwest Normal University, 33 (2008), 43-36.   Google Scholar

[6]

S. JinW. Yue and Sh iying Ge, Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results, Management Optimization, 13 (2017), 1255-1271.  doi: 10.3934/jimo.2016071.  Google Scholar

[7]

J. Liu, S. Jin and W. Yue, Performance evaluation and system optimization of green cognitive radio networks with amultiple-sleep mode, Annals of Operations Research, 2018, doi: 10.1007/s10479-018-3086-6.  Google Scholar

[8]

K. Muthumeenakshi and S. Radha, Distributed cognitive radio spectrum access with imperfect sensing using CTMC, International Journal of Distributed Sensor Networks, 2 (2013), 213-235.   Google Scholar

[9]

R. V. Rao and V. D. Kalyankar, Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm, Engineering Applications of Articial Intelligence, 26 (2013), 524-531.   Google Scholar

[10]

A. Rehman, L. Yang and L. Hanzo, Performance of cognitive hybrid automatic repeat request: Go-Back-N, Proceedings of the IEEE Vehicular Technology Conference, (2016), 1-5. Google Scholar

[11]

O. SalamehK. D. TurckH. BruneelC. Blondia and S. Wittevrongel, Analysis of secondary user performance in cognitive radio networks with reactive spectrum handoff, Telecommunication Systems, 65 (2017), 539-550.   Google Scholar

[12]

Z. SalamiM. Ahmadian-AttariH. Jannati and M. R. Aref, A location privacy-preserving method for spectrum sharing in database-driven cognitive radio networks, Wireless Personal Communications, 95 (2017), 3687-3711.   Google Scholar

[13]

S. WangZ. ZhouM. Ge and C. Wang, Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing, IEEE Journal on Selected Areas in Communications, 31 (2013), 464-475.   Google Scholar

[14]

R. XieF. Yu and H. Ji, Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing, IEEE Transactions on Vehicular Technology, 61 (2012), 770-780.   Google Scholar

[15]

C. XuM. ZhengW. LiangH. Yu and Y. C. Liang, End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting, IEEE Transactions on Wireless Communications, 16 (2017), 3561-3572.   Google Scholar

[16]

L. Zappaterra, J. Gomes, A. Arora and H. Choi, Resource discovery algorithms for channel aggregation in cognitive radio networks, Proceedings of the IEEE Wireless Communications and Networking Conference, (2013), 309-314. Google Scholar

[17]

Y. ZhaoS. Jin and W. Yue, An adjustable channel bonding strategy in centralized cognitive radio networks and its performance optimization, Quality Technology and Quantitative Management, 12 (2015), 291-310.   Google Scholar

Figure 1.  The transmission process of the user packets in the system
Figure 2.  Throughput $ \rho_{su} $ of SU packets vs. the energy detection threshold $ \tau $
Figure 3.  Average latency $ \beta_{su} $ of SU packets vs. the energy detection threshold $ \tau $
Figure 4.  Switching rate $ \omega_{su} $ of SU packets vs. the energy detection threshold $ \tau $
Figure 5.  Channel utilization $ \sigma $ vs. the energy detection threshold $ \tau $
Figure 6.  Throughput $ \rho_{su} $ of SU packets vs. the number $ N $ of reserved channels
Figure 7.  Average latency $ \beta_{su} $ of SU packets vs. the number $ N $ of reserved channels
Figure 8.  Switching rate $ \omega_{su} $ of SU packets vs. the number $ N $ of reserved channels
Figure 9.  Channel utilization $ \sigma $ vs. the number $ N $ of reserved channels
[1]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[4]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[9]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[20]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (62)
  • HTML views (820)
  • Cited by (0)

Other articles
by authors

[Back to Top]