# American Institute of Mathematical Sciences

• Previous Article
Optimal ordering policy for inventory mechanism with a stochastic short-term price discount
• JIMO Home
• This Issue
• Next Article
An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation
May  2020, 16(3): 1171-1185. doi: 10.3934/jimo.2018198

## A smoothing SAA algorithm for a portfolio choice model based on second-order stochastic dominance measures

 1 School of Mathematics and Computational Sciences, Xiangtan University, Xiangtan 411105, Hunan, China 2 Hunan First Normal University, Changsha 410215, Hunan, China

* Corresponding author: Liu Yang

Received  March 2017 Revised  October 2017 Published  December 2018

In this paper, we provide a smoothing sample average approximation (SAA) method to solve a portfolio choice model based on second-order stochastic dominance (SSD) measure. Introducing a second-order stochastic dominance constraint in portfolio choice is theoretically attractive since all risk-averse investors would prefer a dominating portfolio. However, how to get the best choice among SSD efficient portfolios which is based on a stochastic optimization model is a challenge. We use the sample average to approximate the expected return rate function in the model and get a linear/nonlinear programming when the benchmark has discrete distribution. Then we propose a smoothing penalty algorithm to solve this problem. Meanwhile, we investigate the convergence of the optimal value of the transformed model and show that the optimal value converges to its counterpart with probability approaching to one at exponential rate as the sample size increases. By comparing the numerical results of the smoothing SAA algorithm with the common linear programming (LP) algorithm, we find that the smoothing algorithm has better performance than the LP algorithm in three aspects: (ⅰ)the smoothing SAA method can avoid the infinite constraints in the transformed models and the size of the smoothing algorithm model will not increase as the sample grows; (ⅱ)the smoothing SAA algorithm can deal with the nonlinear portfolio models with nonlinear transaction cost function; (ⅲ) the smoothing algorithm can get the global optimal solution because the smoothing function maintains the original convexity.

Citation: Liu Yang, Xiaojiao Tong, Yao Xiong, Feifei Shen. A smoothing SAA algorithm for a portfolio choice model based on second-order stochastic dominance measures. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1171-1185. doi: 10.3934/jimo.2018198
##### References:
 [1] M. J. Akian, L. Menaldi and A. Sulem, Multi-asset porfolio selection problem with transaction cosats, Mathematics and Computers in Simulation, 38 (1995), 163-172.  doi: 10.1016/0378-4754(93)E0079-K.  Google Scholar [2] J. Ang, F. Meng and J. Sun, Two-stage stochastic linear programs with incomplete information on uncertainty, European Journal of Operational Research, 233 (2014), 16-22.  doi: 10.1016/j.ejor.2013.07.039.  Google Scholar [3] R. Bruni, F. Cesarone, A. Scozzari and F. Tardella, On exact and approximate stochastic dominance strategies for portfolio selection, European Journal of Operational Research, 259 (2017), 322-329.  doi: 10.1016/j.ejor.2016.10.006.  Google Scholar [4] D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548-566.  doi: 10.1137/S1052623402420528.  Google Scholar [5] D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329-350.  doi: 10.1007/s10107-003-0453-z.  Google Scholar [6] D. Dentcheva and A. Ruszczyński, Portfolio optimization with stochastic dominance constraints, Journal of Banking and Finance, 30 (2006), 433-451.   Google Scholar [7] J. Dupa$\check{c}$ov$\acute{a}$ and M. Kopa, Robustness of optimal portfolios under risk and stochastic dominance constraints, E.J.Oper. Res., 234 (2014), 434-441.  doi: 10.1016/j.ejor.2013.06.018.  Google Scholar [8] L. F. Escudero, J. F. Monge and D. R. Morales, An SDP approach for multiperiod mixed 0-1 linear programming models with stochastic dominance constraints for risk management, Comp. Oper. Res., 58 (2015), 32-40.  doi: 10.1016/j.cor.2014.12.007.  Google Scholar [9] C. I. F$\acute{a}$bi$\acute{a}$n, G. Mitra, D. Roman and V. Zverovich, An enhanced model for portfolio choice with SSD criteria: A constructive approach, Quantitative Finance, 11 (2011), 1525-1534.  doi: 10.1080/14697680903493607.  Google Scholar [10] P. C. Fishburn, Decision and Value Theory, John Wiley and Sons, New York, 1964. Google Scholar [11] T. Homem-De-Mello and S. Mehrota, A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM Journal of Optimization, 20 (2009), 1250-1273.  doi: 10.1137/08074009X.  Google Scholar [12] J. E. Hodder, J. C. Jackwerth and O. Kolokolova, Improved portfolio choice using second-order stochastic dominance, Review of Finance, 19 (2015), 1623-1647.   Google Scholar [13] J. Hu, T. Homem-De-Mello and S. Mehrota, Sample average approximation of stochastic dominance constrained programs, Mathematical Programming, Series A, 133 (2012), 171-201.  doi: 10.1007/s10107-010-0428-9.  Google Scholar [14] C. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.  doi: 10.1007/s10957-012-0006-9.  Google Scholar [15] B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Transactions on Signal Processing, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar [16] B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.  doi: 10.1007/s10957-011-9904-5.  Google Scholar [17] B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.   Google Scholar [18] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar [19] Y. Liu and H. Xu, Stability analysis of stochastic programs with second order dominance constraints, Mathematical Programming, 142 (2013), 435-460.  doi: 10.1007/s10107-012-0585-0.  Google Scholar [20] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, San Diego, 1979.  Google Scholar [21] M. Menegatti, A note on portfolio selection and stochastic dominance, Decisions Econ. Finan., 39 (2016), 327-331.  doi: 10.1007/s10203-016-0179-z.  Google Scholar [22] R. Meskarian, H. Xu and J. Fliege, Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization, European Journal of Operational Research, 216 (2012), 376-385.  doi: 10.1016/j.ejor.2011.07.044.  Google Scholar [23] R. Meskarian, J. Fliege and H. Xu, Stochstic programming with multivariate second order stochastic dominance constraints with applications in portfolio optimization, Appl. Math. Optim., 70 (2014), 111-140.  doi: 10.1007/s00245-014-9236-6.  Google Scholar [24] J. M. Peng and Z. Lin, A non-interior continuation method for generalized linear complementarity problems, Math.Program, 86 (1999), 533-563.  doi: 10.1007/s101070050104.  Google Scholar [25] J. P. Quirk and R. Saposnik, Admissibility and measurable utility functions, Review of Economic Studies, 29 (1962), 140-146.   Google Scholar [26] A. Shapiro, Monte Carlo sampling Methods, in:Stochastic Programming, Handbook in Operations Research and Management Science, 10 (2003), 353-425.  doi: 10.1016/S0927-0507(03)10006-0.  Google Scholar [27] H. Sun, h. Xu and Y. Wang, A smoothing penalized sample average approximation method for stochastic programs with second-order stochastic dominance constraints, Asia-Pacific Journal of Operational Research, 30 (2013), 1340002, 25 pp. doi: 10.1142/S0217595913400022.  Google Scholar [28] H. Sun and H. Xu, Convergence analysis of stationary points in sample average approximation of stochastic programs with second order stochastic dominance constraints, Math. Program., Ser. A, 143 (2014), 31-59.  doi: 10.1007/s10107-013-0711-7.  Google Scholar [29] X. J. Tong, L. Qi, F. Wu, et al., A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset, Applied Mathematics and Computation, 216 (2010), 1723–1740. doi: 10.1016/j.amc.2009.12.031.  Google Scholar [30] L. Yang, Y. Chen and X. Tong, Smoothing Newton-like method for the solution of nonlinear systems of equalities and inequalities, Numerical Mathematics: Theory, Methods and Applications, 2 (2009), 224-236.   Google Scholar

show all references

##### References:
 [1] M. J. Akian, L. Menaldi and A. Sulem, Multi-asset porfolio selection problem with transaction cosats, Mathematics and Computers in Simulation, 38 (1995), 163-172.  doi: 10.1016/0378-4754(93)E0079-K.  Google Scholar [2] J. Ang, F. Meng and J. Sun, Two-stage stochastic linear programs with incomplete information on uncertainty, European Journal of Operational Research, 233 (2014), 16-22.  doi: 10.1016/j.ejor.2013.07.039.  Google Scholar [3] R. Bruni, F. Cesarone, A. Scozzari and F. Tardella, On exact and approximate stochastic dominance strategies for portfolio selection, European Journal of Operational Research, 259 (2017), 322-329.  doi: 10.1016/j.ejor.2016.10.006.  Google Scholar [4] D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548-566.  doi: 10.1137/S1052623402420528.  Google Scholar [5] D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329-350.  doi: 10.1007/s10107-003-0453-z.  Google Scholar [6] D. Dentcheva and A. Ruszczyński, Portfolio optimization with stochastic dominance constraints, Journal of Banking and Finance, 30 (2006), 433-451.   Google Scholar [7] J. Dupa$\check{c}$ov$\acute{a}$ and M. Kopa, Robustness of optimal portfolios under risk and stochastic dominance constraints, E.J.Oper. Res., 234 (2014), 434-441.  doi: 10.1016/j.ejor.2013.06.018.  Google Scholar [8] L. F. Escudero, J. F. Monge and D. R. Morales, An SDP approach for multiperiod mixed 0-1 linear programming models with stochastic dominance constraints for risk management, Comp. Oper. Res., 58 (2015), 32-40.  doi: 10.1016/j.cor.2014.12.007.  Google Scholar [9] C. I. F$\acute{a}$bi$\acute{a}$n, G. Mitra, D. Roman and V. Zverovich, An enhanced model for portfolio choice with SSD criteria: A constructive approach, Quantitative Finance, 11 (2011), 1525-1534.  doi: 10.1080/14697680903493607.  Google Scholar [10] P. C. Fishburn, Decision and Value Theory, John Wiley and Sons, New York, 1964. Google Scholar [11] T. Homem-De-Mello and S. Mehrota, A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM Journal of Optimization, 20 (2009), 1250-1273.  doi: 10.1137/08074009X.  Google Scholar [12] J. E. Hodder, J. C. Jackwerth and O. Kolokolova, Improved portfolio choice using second-order stochastic dominance, Review of Finance, 19 (2015), 1623-1647.   Google Scholar [13] J. Hu, T. Homem-De-Mello and S. Mehrota, Sample average approximation of stochastic dominance constrained programs, Mathematical Programming, Series A, 133 (2012), 171-201.  doi: 10.1007/s10107-010-0428-9.  Google Scholar [14] C. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.  doi: 10.1007/s10957-012-0006-9.  Google Scholar [15] B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Transactions on Signal Processing, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar [16] B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.  doi: 10.1007/s10957-011-9904-5.  Google Scholar [17] B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.   Google Scholar [18] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.  Google Scholar [19] Y. Liu and H. Xu, Stability analysis of stochastic programs with second order dominance constraints, Mathematical Programming, 142 (2013), 435-460.  doi: 10.1007/s10107-012-0585-0.  Google Scholar [20] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, San Diego, 1979.  Google Scholar [21] M. Menegatti, A note on portfolio selection and stochastic dominance, Decisions Econ. Finan., 39 (2016), 327-331.  doi: 10.1007/s10203-016-0179-z.  Google Scholar [22] R. Meskarian, H. Xu and J. Fliege, Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization, European Journal of Operational Research, 216 (2012), 376-385.  doi: 10.1016/j.ejor.2011.07.044.  Google Scholar [23] R. Meskarian, J. Fliege and H. Xu, Stochstic programming with multivariate second order stochastic dominance constraints with applications in portfolio optimization, Appl. Math. Optim., 70 (2014), 111-140.  doi: 10.1007/s00245-014-9236-6.  Google Scholar [24] J. M. Peng and Z. Lin, A non-interior continuation method for generalized linear complementarity problems, Math.Program, 86 (1999), 533-563.  doi: 10.1007/s101070050104.  Google Scholar [25] J. P. Quirk and R. Saposnik, Admissibility and measurable utility functions, Review of Economic Studies, 29 (1962), 140-146.   Google Scholar [26] A. Shapiro, Monte Carlo sampling Methods, in:Stochastic Programming, Handbook in Operations Research and Management Science, 10 (2003), 353-425.  doi: 10.1016/S0927-0507(03)10006-0.  Google Scholar [27] H. Sun, h. Xu and Y. Wang, A smoothing penalized sample average approximation method for stochastic programs with second-order stochastic dominance constraints, Asia-Pacific Journal of Operational Research, 30 (2013), 1340002, 25 pp. doi: 10.1142/S0217595913400022.  Google Scholar [28] H. Sun and H. Xu, Convergence analysis of stationary points in sample average approximation of stochastic programs with second order stochastic dominance constraints, Math. Program., Ser. A, 143 (2014), 31-59.  doi: 10.1007/s10107-013-0711-7.  Google Scholar [29] X. J. Tong, L. Qi, F. Wu, et al., A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset, Applied Mathematics and Computation, 216 (2010), 1723–1740. doi: 10.1016/j.amc.2009.12.031.  Google Scholar [30] L. Yang, Y. Chen and X. Tong, Smoothing Newton-like method for the solution of nonlinear systems of equalities and inequalities, Numerical Mathematics: Theory, Methods and Applications, 2 (2009), 224-236.   Google Scholar
The expected returns for different smoothing parameters
Comparison of the CPU time for LP and SMOOTH
The expected returns for different transaction cost ratio
The expected returns for different penalty parameter and sample size
Expectation and variance of return rates
 code of stock 600690 713 600115 600111 600000 expectation 0.0051 0.004 0.003 0.01 0.0049 variance 0.0031 0.0042 0.005 0.006 0.0036 code of stock 600252 600011 600362 401 600267 expectation 0.0072 0.0028 0.0073 0.0052 0.005 variance 0.0061 0.0027 0.0065 0.0046 0.003
 code of stock 600690 713 600115 600111 600000 expectation 0.0051 0.004 0.003 0.01 0.0049 variance 0.0031 0.0042 0.005 0.006 0.0036 code of stock 600252 600011 600362 401 600267 expectation 0.0072 0.0028 0.0073 0.0052 0.005 variance 0.0061 0.0027 0.0065 0.0046 0.003
Comparison of the numerical results for LP and SMOOTH
 Method Problem $x$ E$[\cdot]$ LP No-cost (0, 0, 0, 0.7744, 0, 0.2165, 0, 0.0091, 0, 0) 0.0095 SMOOTH No-cost (0, 0, 0, 0.9592, 0, 0.0348, 0, 0.006, 0, 0) 0.0089 LP cost (0, 0, 0, 0.6620, 0, 0.2554, 0, 0.0642, 0, 0) 0.0075 SMOOTH cost (0, 0.0586, 0.0809, 0.1435, 0, 0, 0.4344, 0, 0, 0.2608) 0.0067
 Method Problem $x$ E$[\cdot]$ LP No-cost (0, 0, 0, 0.7744, 0, 0.2165, 0, 0.0091, 0, 0) 0.0095 SMOOTH No-cost (0, 0, 0, 0.9592, 0, 0.0348, 0, 0.006, 0, 0) 0.0089 LP cost (0, 0, 0, 0.6620, 0, 0.2554, 0, 0.0642, 0, 0) 0.0075 SMOOTH cost (0, 0.0586, 0.0809, 0.1435, 0, 0, 0.4344, 0, 0, 0.2608) 0.0067
 [1] Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164 [2] Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017 [3] Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 [4] Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054 [5] Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377 [6] Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340 [7] Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103 [8] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [9] Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 [10] Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $p$-Laplacian equations on $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 [11] Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463 [12] Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166 [13] Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443 [14] Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 [15] Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444 [16] Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055 [17] Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 [18] Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 [19] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 [20] Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.366

## Metrics

• PDF downloads (145)
• HTML views (939)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]