• Previous Article
    An integrated approach based on Fuzzy Inference System for scheduling and process planning through multiple objectives
  • JIMO Home
  • This Issue
  • Next Article
    An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints
May  2020, 16(3): 1221-1233. doi: 10.3934/jimo.2018201

Stability analysis for generalized semi-infinite optimization problems under functional perturbations

Department of Mathematics, Bohai University, Jinzhou, Liaoning 121013, China

* Corresponding author: Xiaodong Fan (E-mail address: bhdxfxd@163.com)

Received  June 2017 Revised  October 2017 Published  December 2018

Fund Project: The first author is supported by National Natural Science Foundation of China (No. 61572082), Natural Science Foundation of Liaoning Province of China (No. 20170540004, 20170540012) and Educational Commission of Liaoning Province of China (No. LZ2016003)

The concepts of essential solutions and essential solution sets for generalized semi-infinite optimization problems (GSIO for brevity) are introduced under functional perturbations, and the relations among the concepts of essential solutions, essential solution sets and lower semicontinuity of solution mappings are discussed. We show that a solution is essential if and only if the solution is unique; and a solution subset is essential if and only if it is the solution set itself. Some sufficient conditions for the upper semicontinuity of solution mappings are obtained. Finally, we show that every GSIO problem can be arbitrarily approximated by stable GSIO problems (the solution mapping is continuous), i.e., the set of all stable GSIO problems is dense in the set of all GSIO problems with the given topology.

Citation: Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201
References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Wiley, Chichester, 1998. Google Scholar

[2]

M. J. CánovasA. L. DontchevM. A. López and J. Parra, Metric regularity of semiinfinite constraint systems, Math. Program., 104 (2005), 329-346.  doi: 10.1007/s10107-005-0618-z.  Google Scholar

[3]

M. J. CánovasD. KlatteM. A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations, SIAM. J. Optim., 18 (2007), 717-732.  doi: 10.1137/060658345.  Google Scholar

[4]

M. J. CánovasM. A. LópezB. S. Mordukhovich and J. Parra, Variational analysis in semi-Infinite and infinite programming, Ⅰ: stability of linear inequality systems of feasible solutions, SIAM J. Optim., 20 (2009), 1504-1526.  doi: 10.1137/090765948.  Google Scholar

[5]

M. J. CánovasM. A. LópezB. S. Mordukhovich and J. Parra, Variational Analysis in Semi-Infinite and Infinite Programming, Ⅱ: Necessary Optimality Conditions, SIAM J. Optim., 20 (2010), 2788-2806.  doi: 10.1137/09076595X.  Google Scholar

[6]

G. Y. Chen and B. D. Craven, Existence and continuity of solutions for vector optimization, J. Optim. Theory Appl., 81 (1994), 459-468.  doi: 10.1007/BF02193095.  Google Scholar

[7]

T. D. ChuongN. Q. Huy and J. C. Yao, Stability of semi-infinite vector optimization problems under functional perturbations, J. Glob. Optim., 45 (2009), 583-595.  doi: 10.1007/s10898-008-9391-x.  Google Scholar

[8]

X. FanC. Cheng and H. Wang, Essential solutions of parametric vector optimization problems, Pacific J. of Optimization, 9 (2013), 413-425.   Google Scholar

[9]

X. FanC. Cheng and H. Wang, Stability of semi-infinite vector optimization problems without compact constraints, Nonlinear Anal., 74 (2011), 2087-2093.  doi: 10.1016/j.na.2010.11.013.  Google Scholar

[10]

X. FanC. Cheng and H. Wang, Stability analysis for vector quasiequilibrium problems, Positivity, 17 (2013), 365-379.  doi: 10.1007/s11117-012-0172-x.  Google Scholar

[11]

X. FanC. Cheng and H. Wang, Sensitivity analysis for vector equilibrium problems under functional perturbations, Numer. Funct. Anal. Optim., 35 (2014), 564-575.  doi: 10.1080/01630563.2013.814140.  Google Scholar

[12]

X. FanC. Cheng and H. Wang, Density of stable convex semi-infinite vector optimization problems, Oper. Res. Lett., 40 (2012), 140-143.  doi: 10.1016/j.orl.2011.11.010.  Google Scholar

[13]

M. K. Fort, Essential and nonessential fixed points, Amer. J. Math., 72 (1950), 315-322.  doi: 10.2307/2372035.  Google Scholar

[14]

A. FuC. Dong and L. Wang, An experimental study on stability and generalization of extreme learning machines, Int. J. Mach. Learn. Cyb., 6 (2015), 129-135.   Google Scholar

[15]

M. A. GobernaM. A. López and M. Todorov, Stability theory for linear inequality systems. Ⅱ. Upper semicontinuity of the solution set mapping, SIAM J. Optim., 7 (1997), 1138-1151.  doi: 10.1137/S105262349528901X.  Google Scholar

[16]

S. Kinoshita, On essential component of the set of fixed points, Osaka J. Math., 4 (1952), 19-22.   Google Scholar

[17]

Z. LinH. Yang and J. Yu, On existence and essential components of the solution set for the system of vector quasi-equilibrium problems, Nonlinear Anal., 63 (2005), e2445-e2452.   Google Scholar

[18]

D. Liu and Y. Du, New results of stability analysis for a class of neutral-type neural network with mixed time delays, Int. J. Mach. Learn. Cyb., 6 (2015), 555-566.   Google Scholar

[19]

Q. Luo, Essential component and essential optimum solution of optimization problems, J. Optim. Theory Appl., 102 (1999), 433-438.  doi: 10.1023/A:1021740709876.  Google Scholar

[20]

J. R. Munkres, Topology, 2nd edition, Prentice Hall, New Jersey, 2000.  Google Scholar

[21]

D. T. Peng, Essential solutions and essential components of the solution set of infinite-dimensional vector optimization problems, Math. Appl., 22 (2009), 358-364.   Google Scholar

[22]

S. W. Xiang and W. S. Yin, Stability results for efficient solutions of vector optimization problems, J. Optim. Theory Appl., 134 (2007), 385-398.  doi: 10.1007/s10957-007-9214-0.  Google Scholar

[23]

S. W. Xiang and Y. H. Zhou, Continuity properties of solutions of vector optimization, Nonlinear Anal., 64 (2006), 2496-2506.  doi: 10.1016/j.na.2005.08.029.  Google Scholar

[24]

S. W. Xiang and Y. H. Zhou, On essential sets and essential components of efficient solutions for vector optimization problems, J. Math. Anal. Appl., 315 (2006), 317-326.  doi: 10.1016/j.jmaa.2005.06.077.  Google Scholar

[25]

H. Yang and J. Yu, Essential solutions and essential components of solution set of vector quasi-equilibrium problems, J. Systems Sci. Math. Sci., 24 (2004), 74-84.   Google Scholar

[26]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, J. Math. Anal. Appl., 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[27]

J. Yu, Essential equilibria of n-person noncooperative games, J. Math. Econ., 31 (1999), 361-372.  doi: 10.1016/S0304-4068(97)00060-8.  Google Scholar

[28]

J. Yu and S. W. Xiang, On essential component of the set of Nash equilibrium points, Nonlinear Anal., 38 (1999), 259-264.  doi: 10.1016/S0362-546X(98)00193-X.  Google Scholar

[29]

X. ZhangR. LiC. Han and R. Yao, Robust stability analysis of uncertain genetic regulatory networks with mixed time delays, Int. J. Mach. Learn. Cyb., 7 (2016), 1005-1022.   Google Scholar

show all references

References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Wiley, Chichester, 1998. Google Scholar

[2]

M. J. CánovasA. L. DontchevM. A. López and J. Parra, Metric regularity of semiinfinite constraint systems, Math. Program., 104 (2005), 329-346.  doi: 10.1007/s10107-005-0618-z.  Google Scholar

[3]

M. J. CánovasD. KlatteM. A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations, SIAM. J. Optim., 18 (2007), 717-732.  doi: 10.1137/060658345.  Google Scholar

[4]

M. J. CánovasM. A. LópezB. S. Mordukhovich and J. Parra, Variational analysis in semi-Infinite and infinite programming, Ⅰ: stability of linear inequality systems of feasible solutions, SIAM J. Optim., 20 (2009), 1504-1526.  doi: 10.1137/090765948.  Google Scholar

[5]

M. J. CánovasM. A. LópezB. S. Mordukhovich and J. Parra, Variational Analysis in Semi-Infinite and Infinite Programming, Ⅱ: Necessary Optimality Conditions, SIAM J. Optim., 20 (2010), 2788-2806.  doi: 10.1137/09076595X.  Google Scholar

[6]

G. Y. Chen and B. D. Craven, Existence and continuity of solutions for vector optimization, J. Optim. Theory Appl., 81 (1994), 459-468.  doi: 10.1007/BF02193095.  Google Scholar

[7]

T. D. ChuongN. Q. Huy and J. C. Yao, Stability of semi-infinite vector optimization problems under functional perturbations, J. Glob. Optim., 45 (2009), 583-595.  doi: 10.1007/s10898-008-9391-x.  Google Scholar

[8]

X. FanC. Cheng and H. Wang, Essential solutions of parametric vector optimization problems, Pacific J. of Optimization, 9 (2013), 413-425.   Google Scholar

[9]

X. FanC. Cheng and H. Wang, Stability of semi-infinite vector optimization problems without compact constraints, Nonlinear Anal., 74 (2011), 2087-2093.  doi: 10.1016/j.na.2010.11.013.  Google Scholar

[10]

X. FanC. Cheng and H. Wang, Stability analysis for vector quasiequilibrium problems, Positivity, 17 (2013), 365-379.  doi: 10.1007/s11117-012-0172-x.  Google Scholar

[11]

X. FanC. Cheng and H. Wang, Sensitivity analysis for vector equilibrium problems under functional perturbations, Numer. Funct. Anal. Optim., 35 (2014), 564-575.  doi: 10.1080/01630563.2013.814140.  Google Scholar

[12]

X. FanC. Cheng and H. Wang, Density of stable convex semi-infinite vector optimization problems, Oper. Res. Lett., 40 (2012), 140-143.  doi: 10.1016/j.orl.2011.11.010.  Google Scholar

[13]

M. K. Fort, Essential and nonessential fixed points, Amer. J. Math., 72 (1950), 315-322.  doi: 10.2307/2372035.  Google Scholar

[14]

A. FuC. Dong and L. Wang, An experimental study on stability and generalization of extreme learning machines, Int. J. Mach. Learn. Cyb., 6 (2015), 129-135.   Google Scholar

[15]

M. A. GobernaM. A. López and M. Todorov, Stability theory for linear inequality systems. Ⅱ. Upper semicontinuity of the solution set mapping, SIAM J. Optim., 7 (1997), 1138-1151.  doi: 10.1137/S105262349528901X.  Google Scholar

[16]

S. Kinoshita, On essential component of the set of fixed points, Osaka J. Math., 4 (1952), 19-22.   Google Scholar

[17]

Z. LinH. Yang and J. Yu, On existence and essential components of the solution set for the system of vector quasi-equilibrium problems, Nonlinear Anal., 63 (2005), e2445-e2452.   Google Scholar

[18]

D. Liu and Y. Du, New results of stability analysis for a class of neutral-type neural network with mixed time delays, Int. J. Mach. Learn. Cyb., 6 (2015), 555-566.   Google Scholar

[19]

Q. Luo, Essential component and essential optimum solution of optimization problems, J. Optim. Theory Appl., 102 (1999), 433-438.  doi: 10.1023/A:1021740709876.  Google Scholar

[20]

J. R. Munkres, Topology, 2nd edition, Prentice Hall, New Jersey, 2000.  Google Scholar

[21]

D. T. Peng, Essential solutions and essential components of the solution set of infinite-dimensional vector optimization problems, Math. Appl., 22 (2009), 358-364.   Google Scholar

[22]

S. W. Xiang and W. S. Yin, Stability results for efficient solutions of vector optimization problems, J. Optim. Theory Appl., 134 (2007), 385-398.  doi: 10.1007/s10957-007-9214-0.  Google Scholar

[23]

S. W. Xiang and Y. H. Zhou, Continuity properties of solutions of vector optimization, Nonlinear Anal., 64 (2006), 2496-2506.  doi: 10.1016/j.na.2005.08.029.  Google Scholar

[24]

S. W. Xiang and Y. H. Zhou, On essential sets and essential components of efficient solutions for vector optimization problems, J. Math. Anal. Appl., 315 (2006), 317-326.  doi: 10.1016/j.jmaa.2005.06.077.  Google Scholar

[25]

H. Yang and J. Yu, Essential solutions and essential components of solution set of vector quasi-equilibrium problems, J. Systems Sci. Math. Sci., 24 (2004), 74-84.   Google Scholar

[26]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, J. Math. Anal. Appl., 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[27]

J. Yu, Essential equilibria of n-person noncooperative games, J. Math. Econ., 31 (1999), 361-372.  doi: 10.1016/S0304-4068(97)00060-8.  Google Scholar

[28]

J. Yu and S. W. Xiang, On essential component of the set of Nash equilibrium points, Nonlinear Anal., 38 (1999), 259-264.  doi: 10.1016/S0362-546X(98)00193-X.  Google Scholar

[29]

X. ZhangR. LiC. Han and R. Yao, Robust stability analysis of uncertain genetic regulatory networks with mixed time delays, Int. J. Mach. Learn. Cyb., 7 (2016), 1005-1022.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[11]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (121)
  • HTML views (950)
  • Cited by (0)

Other articles
by authors

[Back to Top]