• Previous Article
    An adaptively regularized sequential quadratic programming method for equality constrained optimization
  • JIMO Home
  • This Issue
  • Next Article
    Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function
doi: 10.3934/jimo.2019011

Optimal reinsurance-investment problem with dependent risks based on Legendre transform

1. 

School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

2. 

College of Science, Army Engineering University of PLA, Nanjing 211101, China

* Corresponding author

Received  April 2018 Revised  October 2018 Published  March 2019

Fund Project: This work was supported by NNSF of China (No.11871275; No.11371194)

This paper investigates an optimal reinsurance-investment problem in relation to thinning dependent risks. The insurer's wealth process is described by a risk model with two dependent classes of insurance business. The insurer is allowed to purchase reinsurance and invest in one risk-free asset and one risky asset whose price follows CEV model. Our aim is to maximize the expected exponential utility of terminal wealth. Applying Legendre transform-dual technique along with stochastic control theory, we obtain the closed-form expression of optimal strategy. In addition, our wealth process will reduce to the classical Cramér-Lundberg (C-L) model when $ p = 0 $, in this case, we achieve the explicit expression of the optimal strategy for Hyperbolic Absolute Risk Aversion (HARA) utility by using Legendre transform. Finally, some numerical examples are presented to illustrate the impact of our model parameters (e.g., interest and volatility) on the optimal reinsurance-investment strategy.

Citation: Yan Zhang, Peibiao Zhao. Optimal reinsurance-investment problem with dependent risks based on Legendre transform. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019011
References:
[1]

L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Math. Methods Oper. Res., 68 (2008), 181-205. doi: 10.1007/s00186-007-0195-4. Google Scholar

[2]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance Math. Econom., 70 (2016), 245-258. doi: 10.1016/j.insmatheco.2016.06.012. Google Scholar

[3]

H. Chang and K. Chang, Optimal consumption-investment strategy under the Vasicek model: HARA utility and Legendre transform, Insurance Math. Econom., 72 (2017), 215-227. doi: 10.1016/j.insmatheco.2016.10.014. Google Scholar

[4]

J. Gao, Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model, Insurance Math. Econom., 45 (2009), 9-18. doi: 10.1016/j.insmatheco.2009.02.006. Google Scholar

[5]

L. GongA. Badescu and E. Cheung, Recursive methods for a multidimensional risk process with common shocks, Insurance Math. Econom., 50 (2012), 109-120. doi: 10.1016/j.insmatheco.2011.10.007. Google Scholar

[6]

J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4613-9058-9. Google Scholar

[7]

M. Grasselli, A stability result for the HARA class with stochastic interest rates, Insurance Math. Econom., 33 (2003), 611-627. doi: 10.1016/j.insmatheco.2003.09.003. Google Scholar

[8]

M. GuY. YangS. Li and J. Zhang, Constant elasticity of variance model for proportional reinsurance and investment strategies, Insurance Math. Econom., 46 (2010), 580-587. doi: 10.1016/j.insmatheco.2010.03.001. Google Scholar

[9]

E. Jung and J. Kim, Optimal investment strategies for the HARA utility under the constant elasticity of variance model, Insurance Math. Econom., 51 (2012), 667-673. doi: 10.1016/j.insmatheco.2012.09.009. Google Scholar

[10]

D. LiX. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142-162. doi: 10.1016/j.cam.2015.01.038. Google Scholar

[11]

Z. Liang and K. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scand. Actuar. J., 1 (2016), 18-36. doi: 10.1080/03461238.2014.892899. Google Scholar

[12]

Z. LiangJ. BiK. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Math. Methods Oper. Res., 84 (2016), 155-181. doi: 10.1007/s00186-016-0538-0. Google Scholar

[13]

X. Liang and G. Wang, On a reduced form credit risk model with common shock and regime switching, Insurance Math. Econom., 51 (2012), 567-575. doi: 10.1016/j.insmatheco.2012.07.010. Google Scholar

[14]

Z. Liang and M. Long, Minimization of absolute ruin probability under negative correlation assumption, Insurance Math. Econom., 65 (2015), 247-258. doi: 10.1016/j.insmatheco.2015.10.003. Google Scholar

[15]

J. Liu, Portfolio selection in stochastic environments, Rev. Financ. Stud., 20 (2007), 1-39. doi: 10.1093/rfs/hhl001. Google Scholar

[16]

S. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 110-128. doi: 10.1080/10920277.2005.10596214. Google Scholar

[17]

Y. Shen and Y. Zeng, Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach, Insurance Math. Econom., 57 (2014), 1-12. doi: 10.1016/j.insmatheco.2014.04.004. Google Scholar

[18]

D. Sheng, Explicit solution of reinsurance-investment problem for an insurer with dynamic income under vasicek model, Advances in Mathematical Physics, 2016 (2016), Art. ID 1967872, 13 pp. doi: 10.1155/2016/1967872. Google Scholar

[19]

G. Wang and K. Yuen, On a correlated aggregate claims model with thinning-dependence structure, Insurance Math. Econom., 36 (2005), 456-468. doi: 10.1016/j.insmatheco.2005.04.004. Google Scholar

[20]

Y. WangX. Rong and H. Zhao, Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model, J. Comput. Appl. Math., 338 (2018), 414-431. doi: 10.1016/j.cam.2017.08.001. Google Scholar

[21]

J. XiaoH. Zhai and C. Qin, The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance Math. Econom., 40 (2007), 302-310. doi: 10.1016/j.insmatheco.2006.04.007. Google Scholar

[22]

K. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance Math. Econom., 64 (2015), 1-13. doi: 10.1016/j.insmatheco.2015.04.009. Google Scholar

[23]

Y. ZengD. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance Math. Econom., 66 (2016), 138-152. doi: 10.1016/j.insmatheco.2015.10.012. Google Scholar

[24]

H. ZhaoX. Rong and Y. Zhao, Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model, Insurance Math. Econom., 53 (2013), 504-514. doi: 10.1016/j.insmatheco.2013.08.004. Google Scholar

[25]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance Math. Econom., 58 (2014), 57-67. doi: 10.1016/j.insmatheco.2014.06.006. Google Scholar

show all references

References:
[1]

L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Math. Methods Oper. Res., 68 (2008), 181-205. doi: 10.1007/s00186-007-0195-4. Google Scholar

[2]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance Math. Econom., 70 (2016), 245-258. doi: 10.1016/j.insmatheco.2016.06.012. Google Scholar

[3]

H. Chang and K. Chang, Optimal consumption-investment strategy under the Vasicek model: HARA utility and Legendre transform, Insurance Math. Econom., 72 (2017), 215-227. doi: 10.1016/j.insmatheco.2016.10.014. Google Scholar

[4]

J. Gao, Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model, Insurance Math. Econom., 45 (2009), 9-18. doi: 10.1016/j.insmatheco.2009.02.006. Google Scholar

[5]

L. GongA. Badescu and E. Cheung, Recursive methods for a multidimensional risk process with common shocks, Insurance Math. Econom., 50 (2012), 109-120. doi: 10.1016/j.insmatheco.2011.10.007. Google Scholar

[6]

J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4613-9058-9. Google Scholar

[7]

M. Grasselli, A stability result for the HARA class with stochastic interest rates, Insurance Math. Econom., 33 (2003), 611-627. doi: 10.1016/j.insmatheco.2003.09.003. Google Scholar

[8]

M. GuY. YangS. Li and J. Zhang, Constant elasticity of variance model for proportional reinsurance and investment strategies, Insurance Math. Econom., 46 (2010), 580-587. doi: 10.1016/j.insmatheco.2010.03.001. Google Scholar

[9]

E. Jung and J. Kim, Optimal investment strategies for the HARA utility under the constant elasticity of variance model, Insurance Math. Econom., 51 (2012), 667-673. doi: 10.1016/j.insmatheco.2012.09.009. Google Scholar

[10]

D. LiX. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142-162. doi: 10.1016/j.cam.2015.01.038. Google Scholar

[11]

Z. Liang and K. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scand. Actuar. J., 1 (2016), 18-36. doi: 10.1080/03461238.2014.892899. Google Scholar

[12]

Z. LiangJ. BiK. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Math. Methods Oper. Res., 84 (2016), 155-181. doi: 10.1007/s00186-016-0538-0. Google Scholar

[13]

X. Liang and G. Wang, On a reduced form credit risk model with common shock and regime switching, Insurance Math. Econom., 51 (2012), 567-575. doi: 10.1016/j.insmatheco.2012.07.010. Google Scholar

[14]

Z. Liang and M. Long, Minimization of absolute ruin probability under negative correlation assumption, Insurance Math. Econom., 65 (2015), 247-258. doi: 10.1016/j.insmatheco.2015.10.003. Google Scholar

[15]

J. Liu, Portfolio selection in stochastic environments, Rev. Financ. Stud., 20 (2007), 1-39. doi: 10.1093/rfs/hhl001. Google Scholar

[16]

S. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 110-128. doi: 10.1080/10920277.2005.10596214. Google Scholar

[17]

Y. Shen and Y. Zeng, Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach, Insurance Math. Econom., 57 (2014), 1-12. doi: 10.1016/j.insmatheco.2014.04.004. Google Scholar

[18]

D. Sheng, Explicit solution of reinsurance-investment problem for an insurer with dynamic income under vasicek model, Advances in Mathematical Physics, 2016 (2016), Art. ID 1967872, 13 pp. doi: 10.1155/2016/1967872. Google Scholar

[19]

G. Wang and K. Yuen, On a correlated aggregate claims model with thinning-dependence structure, Insurance Math. Econom., 36 (2005), 456-468. doi: 10.1016/j.insmatheco.2005.04.004. Google Scholar

[20]

Y. WangX. Rong and H. Zhao, Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model, J. Comput. Appl. Math., 338 (2018), 414-431. doi: 10.1016/j.cam.2017.08.001. Google Scholar

[21]

J. XiaoH. Zhai and C. Qin, The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance Math. Econom., 40 (2007), 302-310. doi: 10.1016/j.insmatheco.2006.04.007. Google Scholar

[22]

K. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance Math. Econom., 64 (2015), 1-13. doi: 10.1016/j.insmatheco.2015.04.009. Google Scholar

[23]

Y. ZengD. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance Math. Econom., 66 (2016), 138-152. doi: 10.1016/j.insmatheco.2015.10.012. Google Scholar

[24]

H. ZhaoX. Rong and Y. Zhao, Optimal investment strategies for an insurer and a reinsurer with a jump diffusion risk process under the CEV model, Insurance Math. Econom., 53 (2013), 504-514. doi: 10.1016/j.insmatheco.2013.08.004. Google Scholar

[25]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance Math. Econom., 58 (2014), 57-67. doi: 10.1016/j.insmatheco.2014.06.006. Google Scholar

Figure 1.  Effect of $ t $ on the optimal reinsurance strategies
Figure 2.  Effect of $ v $ on the optimal reinsurance strategies
Figure 3.  Effect of $ p $ on the optimal reinsurance strategies
Figure 4.  Effect of $ \alpha _1 $ on the optimal reinsurance strategies
Figure 5.  Effect of $ \alpha _2 $ on the optimal reinsurance strategies
Figure 6.  Effect of $ s $ on the optimal investment strategy
Figure 7.  Effect of $ \mu - r $ on the optimal investment strategy
Figure 8.  Effect of $ \sigma $ on the optimal investment strategy
[1]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[2]

Yiling Chen, Baojun Bian. optimal investment and dividend policy in an insurance company: A varied bound for dividend rates. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5083-5105. doi: 10.3934/dcdsb.2019044

[3]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[4]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[5]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[6]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[7]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[8]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control & Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[9]

Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015

[10]

Sabyasachi Karati, Palash Sarkar. Connecting Legendre with Kummer and Edwards. Advances in Mathematics of Communications, 2019, 13 (1) : 41-66. doi: 10.3934/amc.2019003

[11]

Daniel Brinkman, Christian Ringhofer. A kinetic games framework for insurance plans. Kinetic & Related Models, 2017, 10 (1) : 93-116. doi: 10.3934/krm.2017004

[12]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[13]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control & Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[14]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control & Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[15]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[16]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[17]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[18]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[19]

Hongguang Xiao, Wen Tan, Dehua Xiang, Lifu Chen, Ning Li. A study of numerical integration based on Legendre polynomial and RLS algorithm. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 457-464. doi: 10.3934/naco.2017028

[20]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

2018 Impact Factor: 1.025

Article outline

Figures and Tables

[Back to Top]