# American Institute of Mathematical Sciences

September  2020, 16(5): 2175-2193. doi: 10.3934/jimo.2019049

## A stochastic model of contagion with different individual types

 1 Underwood International College, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea 2 Department of Mathematics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Korea 3 Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea

* Corresponding author

Received  April 2018 Revised  December 2018 Published  May 2019

We develop a stochastic model of contagion with two individual types by extending an archetypal SIS CTMC model. Our results include the analyses of the contagion duration and the number of individual afflictions. Numerical applications with the minority and majority types are provided to consider various contagions.

Citation: Geofferey Jiyun Kim, Jerim Kim, Bara Kim. A stochastic model of contagion with different individual types. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2175-2193. doi: 10.3934/jimo.2019049
##### References:

show all references

##### References:
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 1
The probability mass functions of the number of individual afflictions in Application 1
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 2
The probability mass functions of the number of individual afflictions in Application 2
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 3
The probability mass functions of the number of individual afflictions in Application 3
Parameter values for Application 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.2 0.1313 2.625 1.25 1 1 (ⅱ) 0.15 0.1313 2.625 2.25 1 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.2 0.1313 2.625 1.25 1 1 (ⅱ) 0.15 0.1313 2.625 2.25 1 1
Parameter values of Application 2
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.25 0.1313 2.625 0.25 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1.02 0.6
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.25 0.1313 2.625 0.25 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1.02 0.6
Parameter values of Application 3
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.5 0 0 0.5 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1 1 (iii) 0 0.2625 5.25 0 1 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.5 0 0 0.5 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1 1 (iii) 0 0.2625 5.25 0 1 1
 [1] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [2] Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 [3] Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 [4] Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 [5] Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323 [6] Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168 [7] Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460 [8] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [9] Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 [10] Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054 [11] Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047 [12] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [13] Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320 [14] Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048 [15] Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 [16] Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383 [17] Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.366