September  2020, 16(5): 2267-2281. doi: 10.3934/jimo.2019053

Differential equation method based on approximate augmented Lagrangian for nonlinear programming

School of Mathematics, Zhejiang Ocean University, Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan, Zhejiang 316022, China

* Corresponding author: Hongying Huang

Received  May 2018 Revised  February 2019 Published  May 2019

Fund Project: The research is supported by the National Natural Science Foundation of China under Grant Nos.61673352 and 11771398

This paper analyzes the approximate augmented Lagrangian dynamical systems for constrained optimization. We formulate the differential systems based on first derivatives and second derivatives of the approximate augmented Lagrangian. The solution of the original optimization problems can be obtained at the equilibrium point of the differential equation systems, which lead the dynamic trajectory into the feasible region. Under suitable conditions, the asymptotic stability of the differential systems and local convergence properties of their Euler discrete schemes are analyzed, including the locally quadratic convergence rate of the discrete sequence for the second derivatives based differential system. The transient behavior of the differential equation systems is simulated and the validity of the approach is verified with numerical experiments.

Citation: Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2267-2281. doi: 10.3934/jimo.2019053
References:
[1]

K. J. Arrow and L. Hurwicz, Reduction of constrained maxima to saddle point problems, in Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, (eds. J.Neyman), University of California Press, Berkeley, (1956), 1–20.  Google Scholar

[2]

D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, , in Computer Science and Applied Mathematics, Academic Press Inc, New York, 1982.  Google Scholar

[3]

D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.  Google Scholar

[4]

Yu. G. Evtushenko, Numerical Optimization Techniques, Optimization Software, New York, 1985. doi: 10.1007/978-1-4612-5022-7.  Google Scholar

[5]

Yu. G. Evtushenko and V. G. Zhadan, Barrier-projective methods for nonlinear programming, Comp.Math. Math. Phys., 34 (1994), 579-590.   Google Scholar

[6]

Yu. G. Evtushenko and V. G. Zhandan, Stable barrier-projection and barrier-Newton methods in nonlinear programming, Comput. Optim. Appl., 3 (1994), 289-303.  doi: 10.1007/BF01299205.  Google Scholar

[7]

Yu. G. Evtushenko and V. G. Zhandan, Stable barrier-projection and barrier-Newton methods for linear and nonlinear programming, in Algorithms for Continuous Optimization(eds.E. Spedicato), Kulwer Academic Publishers, 434 (1994), 255–285.  Google Scholar

[8]

Yu. G. Evtushenko, Two numerical methods of solving nonlinear programming problems, Sov. Math. Dokl., 15 (1974), 420-423.   Google Scholar

[9]

A. V. Fiacco and G. P. McCormick, Sequential Unconstrained Minimization Techniques, in Nonlinear Programming, John Wiely, New York, 1968.  Google Scholar

[10]

M. Hestenes, Multiplier and gradient methods, J.Optim.Theor.Appl., 4 (1969), 303-320.  doi: 10.1007/BF00927673.  Google Scholar

[11]

W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, in Lecture Notes Economics and Mathematical Systems, Springer-Verlag, Berlin Heidelberg-New York, 1981. doi: 10.1007/BF00934594.  Google Scholar

[12]

X. X. HuangK. L. Teo and X. Q. Yang, Approximate augmented Lagrangian functions and nonlinear semidefinite programs, Acta Mathematica Sinica (English Series), 22 (2006), 1283-1296.  doi: 10.1007/s10114-005-0702-6.  Google Scholar

[13]

A. Ioffe, Necessary and sufficient conditions for a local minimum 3: Second-order conditions and augmented duality, SIAM J. Control Optim., 17 (1979), 266-288.  doi: 10.1137/0317021.  Google Scholar

[14]

L. JinL. W. Zhang and X. T. Xiao, Two differential equation systems for equality-constrained optimization, Appl. Math. Comput., 190 (2007), 1030-1039.  doi: 10.1016/j.amc.2006.11.041.  Google Scholar

[15]

L. JinL. W. Zhang and X. T. Xiao, Two differential equation systems for inequality constrained optimization, Appl. Math. Comput., 188 (2007), 1334-1343.  doi: 10.1016/j.amc.2006.10.085.  Google Scholar

[16]

L. Jin, A stable differential equation approach for inequality constrained optimization problems, Appl. Math. Comput., 206 (2008), 186-192.  doi: 10.1016/j.amc.2008.09.007.  Google Scholar

[17]

L. JinH. X. Yu and Z. S. Liu, Differential systems for constrained optimization via a nonlinear augmented Lagrangian, Appl. Math. Comput., 235 (2014), 482-491.  doi: 10.1016/j.amc.2014.02.097.  Google Scholar

[18]

P. Q. Pan, New ODE methods for equality constrained optimization (1)-equations, J. Comput. Math., 10 (1992), 77-92.   Google Scholar

[19]

M. J. D. Powell, A method for non-linear constraints in minimizations problems in optimization, in (eds. R. Fletcher), (1969), 283–298.  Google Scholar

[20]

R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math.Oper.Res., 1 (1976), 97-116.  doi: 10.1287/moor.1.2.97.  Google Scholar

[21]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[22]

R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control, 12 (1974), 268-285.  doi: 10.1137/0312021.  Google Scholar

[23]

R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), 183-238.  doi: 10.1137/1035044.  Google Scholar

[24]

H. Yamadhita, A differential equation approach to nonlinear programming, Math. Prog., 18 (1980), 155-168.  doi: 10.1007/BF01588311.  Google Scholar

[25]

L. W. Zhang, A modified version to the differential system of Evtushenko and Zhanda for solving nonlinear programming, in Numerical Linear Algebra and Optimization(eds.Ya-xiang Yuan), Science Press, (1999), 161–168. Google Scholar

[26]

L. W. ZhangQ. Li and X. Zhang, Two differential systems for solving nonlinear programming problems, OR Trans., 4 (2000), 33-46.   Google Scholar

show all references

References:
[1]

K. J. Arrow and L. Hurwicz, Reduction of constrained maxima to saddle point problems, in Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, (eds. J.Neyman), University of California Press, Berkeley, (1956), 1–20.  Google Scholar

[2]

D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, , in Computer Science and Applied Mathematics, Academic Press Inc, New York, 1982.  Google Scholar

[3]

D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.  Google Scholar

[4]

Yu. G. Evtushenko, Numerical Optimization Techniques, Optimization Software, New York, 1985. doi: 10.1007/978-1-4612-5022-7.  Google Scholar

[5]

Yu. G. Evtushenko and V. G. Zhadan, Barrier-projective methods for nonlinear programming, Comp.Math. Math. Phys., 34 (1994), 579-590.   Google Scholar

[6]

Yu. G. Evtushenko and V. G. Zhandan, Stable barrier-projection and barrier-Newton methods in nonlinear programming, Comput. Optim. Appl., 3 (1994), 289-303.  doi: 10.1007/BF01299205.  Google Scholar

[7]

Yu. G. Evtushenko and V. G. Zhandan, Stable barrier-projection and barrier-Newton methods for linear and nonlinear programming, in Algorithms for Continuous Optimization(eds.E. Spedicato), Kulwer Academic Publishers, 434 (1994), 255–285.  Google Scholar

[8]

Yu. G. Evtushenko, Two numerical methods of solving nonlinear programming problems, Sov. Math. Dokl., 15 (1974), 420-423.   Google Scholar

[9]

A. V. Fiacco and G. P. McCormick, Sequential Unconstrained Minimization Techniques, in Nonlinear Programming, John Wiely, New York, 1968.  Google Scholar

[10]

M. Hestenes, Multiplier and gradient methods, J.Optim.Theor.Appl., 4 (1969), 303-320.  doi: 10.1007/BF00927673.  Google Scholar

[11]

W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, in Lecture Notes Economics and Mathematical Systems, Springer-Verlag, Berlin Heidelberg-New York, 1981. doi: 10.1007/BF00934594.  Google Scholar

[12]

X. X. HuangK. L. Teo and X. Q. Yang, Approximate augmented Lagrangian functions and nonlinear semidefinite programs, Acta Mathematica Sinica (English Series), 22 (2006), 1283-1296.  doi: 10.1007/s10114-005-0702-6.  Google Scholar

[13]

A. Ioffe, Necessary and sufficient conditions for a local minimum 3: Second-order conditions and augmented duality, SIAM J. Control Optim., 17 (1979), 266-288.  doi: 10.1137/0317021.  Google Scholar

[14]

L. JinL. W. Zhang and X. T. Xiao, Two differential equation systems for equality-constrained optimization, Appl. Math. Comput., 190 (2007), 1030-1039.  doi: 10.1016/j.amc.2006.11.041.  Google Scholar

[15]

L. JinL. W. Zhang and X. T. Xiao, Two differential equation systems for inequality constrained optimization, Appl. Math. Comput., 188 (2007), 1334-1343.  doi: 10.1016/j.amc.2006.10.085.  Google Scholar

[16]

L. Jin, A stable differential equation approach for inequality constrained optimization problems, Appl. Math. Comput., 206 (2008), 186-192.  doi: 10.1016/j.amc.2008.09.007.  Google Scholar

[17]

L. JinH. X. Yu and Z. S. Liu, Differential systems for constrained optimization via a nonlinear augmented Lagrangian, Appl. Math. Comput., 235 (2014), 482-491.  doi: 10.1016/j.amc.2014.02.097.  Google Scholar

[18]

P. Q. Pan, New ODE methods for equality constrained optimization (1)-equations, J. Comput. Math., 10 (1992), 77-92.   Google Scholar

[19]

M. J. D. Powell, A method for non-linear constraints in minimizations problems in optimization, in (eds. R. Fletcher), (1969), 283–298.  Google Scholar

[20]

R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math.Oper.Res., 1 (1976), 97-116.  doi: 10.1287/moor.1.2.97.  Google Scholar

[21]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[22]

R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control, 12 (1974), 268-285.  doi: 10.1137/0312021.  Google Scholar

[23]

R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Rev., 35 (1993), 183-238.  doi: 10.1137/1035044.  Google Scholar

[24]

H. Yamadhita, A differential equation approach to nonlinear programming, Math. Prog., 18 (1980), 155-168.  doi: 10.1007/BF01588311.  Google Scholar

[25]

L. W. Zhang, A modified version to the differential system of Evtushenko and Zhanda for solving nonlinear programming, in Numerical Linear Algebra and Optimization(eds.Ya-xiang Yuan), Science Press, (1999), 161–168. Google Scholar

[26]

L. W. ZhangQ. Li and X. Zhang, Two differential systems for solving nonlinear programming problems, OR Trans., 4 (2000), 33-46.   Google Scholar

Figure 1.  Performances of the variable $ x $ and $ z $ in Problem 71
Figure 2.  Performances of the variable $ x $ and $ z $ in Problem 53
Figure 3.  Performances of the variable $ x $ and $ z $ in Problem 100
Figure 4.  Performances of the variable $ x $ and $ z $ in Problem 113
Figure 5.  Performances of the variable x and z in Problem 100
Figure 6.  Performances of the cost function and the objective function in Problem 100
Figure 7.  Performances of the variable x and z in Problem 113
Figure 8.  Performances of the cost function and the objective function in Problem 113
Table 1.  numerical results
Test n p q IT $ S(z) $ $ f(x^*) $ $ F(x^*) $
P.71 4 10 1 349 8.125604 $ \times10^{-10} $ 17.014 17.0140173
P.53 5 13 3 127 1.175666 $ \times10^{-11} $ 4.0930 4.093023
P.100 7 4 0 967 3.829630$ \times10^{-12} $ 678.6796 680.6300573
P.113 10 8 0 991 2.452665$ \times10^{-12} $ 24.3062 24.306291
Test n p q IT $ S(z) $ $ f(x^*) $ $ F(x^*) $
P.71 4 10 1 349 8.125604 $ \times10^{-10} $ 17.014 17.0140173
P.53 5 13 3 127 1.175666 $ \times10^{-11} $ 4.0930 4.093023
P.100 7 4 0 967 3.829630$ \times10^{-12} $ 678.6796 680.6300573
P.113 10 8 0 991 2.452665$ \times10^{-12} $ 24.3062 24.306291
[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (93)
  • HTML views (570)
  • Cited by (0)

Other articles
by authors

[Back to Top]