September  2020, 16(5): 2503-2520. doi: 10.3934/jimo.2019066

Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints

1. 

Department of Mathematics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey

2. 

Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan

* Corresponding author: Elimhan N. Mahmudov

Received  November 2018 Revised  February 2019 Published  May 2019

The present paper studies a new class of problems of optimal control theory with linear second order self-adjoint Sturm-Liouville type differential operators and with functional and non-functional endpoint constraints. Sufficient conditions of optimality, containing both the second order Euler-Lagrange and Hamiltonian type inclusions are derived. The presence of functional constraints generates a special second order transversality inclusions and complementary slackness conditions peculiar to inequality constraints; this approach and results make a bridge between optimal control problem with Sturm-Liouville type differential differential inclusions and constrained mathematical programming problems in finite-dimensional spaces.The idea for obtaining optimality conditions is based on applying locally-adjoint mappings to Sturm-Liouville type set-valued mappings. The result generalizes to the problem with a second order non-self-adjoint differential operator. Furthermore, practical applications of these results are demonstrated by optimization of some semilinear optimal control problems for which the Pontryagin maximum condition is obtained. A numerical example is given to illustrate the feasibility and effectiveness of the theoretic results obtained.

Citation: Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066
References:
[1]

S. AdlyA. Hantoute and M. Th'era, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.  doi: 10.1007/s10107-015-0938-6.  Google Scholar

[2]

N. U. Ahmed, Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.   Google Scholar

[3]

D. Azzam-Laouir and L. Sabrina, Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.   Google Scholar

[4]

A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014. doi: 10.1007/978-3-319-08114-4.  Google Scholar

[5]

A. Cernea, Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.   Google Scholar

[6]

F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

Y. GaoX. YangJ. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.  doi: 10.3934/jimo.2015.11.673.  Google Scholar

[8]

S. J. LiS. K. Zhu and K. Lay Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.  doi: 10.1007/s10957-011-9915-2.  Google Scholar

[9]

Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005. doi: 10.1007/b104943.  Google Scholar

[10]

Y. LiuJ. Wu and Z. Li, Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.  doi: 10.1007/s11424-007-9032-3.  Google Scholar

[11]

P. D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.  doi: 10.1137/S0363012991217494.  Google Scholar

[12]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[13]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[14]

E. N. Mahmudov, Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[15]

E. N. Mahmudov, Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.   Google Scholar

[16]

E. N. Mahmudov, Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.  doi: 10.1080/01630563.2015.1014048.  Google Scholar

[17]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).  doi: 10.3934/jimo.2018145.  Google Scholar

[19]

B. S. Mordukhovich, Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.  doi: 10.1007/s10957-013-0301-0.  Google Scholar

[20]

Y. Xu and Z. Peng, Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.  doi: 10.3934/jimo.2016019.  Google Scholar

show all references

References:
[1]

S. AdlyA. Hantoute and M. Th'era, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.  doi: 10.1007/s10107-015-0938-6.  Google Scholar

[2]

N. U. Ahmed, Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.   Google Scholar

[3]

D. Azzam-Laouir and L. Sabrina, Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.   Google Scholar

[4]

A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014. doi: 10.1007/978-3-319-08114-4.  Google Scholar

[5]

A. Cernea, Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.   Google Scholar

[6]

F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

Y. GaoX. YangJ. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.  doi: 10.3934/jimo.2015.11.673.  Google Scholar

[8]

S. J. LiS. K. Zhu and K. Lay Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.  doi: 10.1007/s10957-011-9915-2.  Google Scholar

[9]

Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005. doi: 10.1007/b104943.  Google Scholar

[10]

Y. LiuJ. Wu and Z. Li, Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.  doi: 10.1007/s11424-007-9032-3.  Google Scholar

[11]

P. D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.  doi: 10.1137/S0363012991217494.  Google Scholar

[12]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[13]

E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[14]

E. N. Mahmudov, Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.  doi: 10.3934/eect.2018024.  Google Scholar

[15]

E. N. Mahmudov, Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.   Google Scholar

[16]

E. N. Mahmudov, Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.  doi: 10.1080/01630563.2015.1014048.  Google Scholar

[17]

E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.  doi: 10.1007/s10957-018-1260-2.  Google Scholar

[18]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).  doi: 10.3934/jimo.2018145.  Google Scholar

[19]

B. S. Mordukhovich, Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.  doi: 10.1007/s10957-013-0301-0.  Google Scholar

[20]

Y. Xu and Z. Peng, Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.  doi: 10.3934/jimo.2016019.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (90)
  • HTML views (550)
  • Cited by (0)

Other articles
by authors

[Back to Top]