# American Institute of Mathematical Sciences

November  2020, 16(6): 2581-2602. doi: 10.3934/jimo.2019071

## Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk

 1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, China 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3 Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

* Corresponding author: Hailin Sun

Received  December 2017 Revised  March 2019 Published  July 2019

Fund Project: The work is supported by National Natural Science Foundation of China grant 11871276, 11571178 and 11571056

A portfolio optimization model with relaxed second order stochastic dominance (SSD) constraints is presented. The proposed model uses Conditional Value at Risk (CVaR) constraints at probability level $\beta\in(0,1)$ to relax SSD constraints. The relaxation is justified by theoretical convergence results based on sample average approximation (SAA) method when sample size $N\to\infty$ and CVaR probability level $\beta$ tends to 1. SAA method is used to reduce infinite number of inequalities of SSD constraints to finite ones and also to calculate the expectation value. The proposed relaxation on the SSD constraints in portfolio optimization problem is achieved when the probability level $\beta$ of CVaR takes value less than but close to 1, and the model can then be solved by cutting plane method. The performance and characteristics of the portfolios constructed by solving the proposed model are tested empirically on three sets of market data, and the experimental results are analyzed and discussed. Furthermore, it is shown that with appropriate choices of CVaR probability level $\beta$, the constructed portfolios are sparse and outperform the portfolios constructed by solving portfolio optimization problems with SSD constraints, with either index portfolios or mean-variance (MV) portfolios as benchmarks.

Citation: Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071
##### References:

show all references

##### References:
In-sample back testing with NDX data with NDX index as benchmark
NDX: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
NDX: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
S&P 500: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
S&P 500: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
FTSE 100: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
FTSE 100: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
NDX: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0009 0.0088 0.1030 0.1389 SSD 0.0032 0.0118 0.2717 0.4501 $CVaR_ {\beta=0.9}$ 0.0033 0.0118 0.2784 0.4670 $CVaR_{\beta=0.8}$ 0.0032 0.0117 0.2724 0.4486 $CVaR_{\beta=0.7}$ 0.0033 0.0119 0.2810 0.4652 Benchmark: MV 0.0005 0.0078 0.0658 0.0841 SSD 0.0026 0.0102 0.2545 0.4129 $CVaR_ {\beta=0.9}$ 0.0027 0.0118 0.2696 0.4442 $CVaR_{\beta=0.8}$ 0.0030 0.0117 0.2931 0.4916 $CVaR_{\beta=0.7}$ 0.0030 0.0102 0.2943 0.5004
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0009 0.0088 0.1030 0.1389 SSD 0.0032 0.0118 0.2717 0.4501 $CVaR_ {\beta=0.9}$ 0.0033 0.0118 0.2784 0.4670 $CVaR_{\beta=0.8}$ 0.0032 0.0117 0.2724 0.4486 $CVaR_{\beta=0.7}$ 0.0033 0.0119 0.2810 0.4652 Benchmark: MV 0.0005 0.0078 0.0658 0.0841 SSD 0.0026 0.0102 0.2545 0.4129 $CVaR_ {\beta=0.9}$ 0.0027 0.0118 0.2696 0.4442 $CVaR_{\beta=0.8}$ 0.0030 0.0117 0.2931 0.4916 $CVaR_{\beta=0.7}$ 0.0030 0.0102 0.2943 0.5004
S&P 500: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0004 0.0079 0.0534 0.0705 SSD 0.0017 0.0112 0.1490 0.2264 $CVaR_ {\beta=0.9}$ 0.0018 0.0111 0.1606 0.2444 $CVaR_{\beta=0.8}$ 0.0016 0.0114 0.1442 0.2171 $CVaR_{\beta=0.7}$ 0.0017 0.0115 0.1477 0.2241 Benchmark: MV 0.0003 0.0060 0.0421 0.0573 SSD 0.0009 0.0110 0.0802 0.1103 $CVaR_ {\beta=0.9}$ 0.0012 0.0110 0.1086 0.1517 $CVaR_{\beta=0.8}$ 0.0013 0.0107 0.1196 0.1702 $CVaR_{\beta=0.7}$ 0.0015 0.0110 0.1383 0.2001
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0004 0.0079 0.0534 0.0705 SSD 0.0017 0.0112 0.1490 0.2264 $CVaR_ {\beta=0.9}$ 0.0018 0.0111 0.1606 0.2444 $CVaR_{\beta=0.8}$ 0.0016 0.0114 0.1442 0.2171 $CVaR_{\beta=0.7}$ 0.0017 0.0115 0.1477 0.2241 Benchmark: MV 0.0003 0.0060 0.0421 0.0573 SSD 0.0009 0.0110 0.0802 0.1103 $CVaR_ {\beta=0.9}$ 0.0012 0.0110 0.1086 0.1517 $CVaR_{\beta=0.8}$ 0.0013 0.0107 0.1196 0.1702 $CVaR_{\beta=0.7}$ 0.0015 0.0110 0.1383 0.2001
FTSE 100: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0012 0.0112 0.1080 0.1685 SSD 0.0017 0.0158 0.1094 0.1848 $CVaR_ {\beta=0.9}$ 0.0017 0.0155 0.1099 0.1836 $CVaR_{\beta=0.8}$ 0.0020 0.0157 0.1254 0.2131 $CVaR_{\beta=0.7}$ 0.0021 0.0164 0.1269 0.2185 Benchmark: MV 0.0018 0.0095 0.1901 0.3418 SSD 0.0023 0.0141 0.1606 0.2925 $CVaR_ {\beta=0.9}$ 0.0021 0.0134 0.1568 0.2747 $CVaR_{\beta=0.8}$ 0.0021 0.0136 0.1578 0.2755 $CVaR_{\beta=0.7}$ 0.0024 0.0141 0.1703 0.3058
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0012 0.0112 0.1080 0.1685 SSD 0.0017 0.0158 0.1094 0.1848 $CVaR_ {\beta=0.9}$ 0.0017 0.0155 0.1099 0.1836 $CVaR_{\beta=0.8}$ 0.0020 0.0157 0.1254 0.2131 $CVaR_{\beta=0.7}$ 0.0021 0.0164 0.1269 0.2185 Benchmark: MV 0.0018 0.0095 0.1901 0.3418 SSD 0.0023 0.0141 0.1606 0.2925 $CVaR_ {\beta=0.9}$ 0.0021 0.0134 0.1568 0.2747 $CVaR_{\beta=0.8}$ 0.0021 0.0136 0.1578 0.2755 $CVaR_{\beta=0.7}$ 0.0024 0.0141 0.1703 0.3058
Average, minimum and maximum of daily traded basket sizes of different models with both benchmarks in three data sets
 NDX (100) Index MV avg. min. max. avg. min. max. SSD 4.60 3 9 5.55 3 9 $CVaR_{\beta = 0.9}$ 4.65 3 10 5.53 2 9 $CVaR_{\beta = 0.8}$ 4.65 3 10 5.51 2 8 $CVaR_{\beta = 0.7}$ 4.64 3 9 5.50 3 8 FTSE (100) Index MV avg. min. max. avg. min. max. SSD 4.05 2 9 5.16 2 9 $CVaR_{\beta = 0.9}$ 3.98 2 9 5.11 2 9 $CVaR_{\beta = 0.8}$ 3.90 2 8 5.01 2 8 $CVaR_{\beta = 0.7}$ 3.91 3 9 5.17 2 9 S&P (500) Index MV avg. min. max. avg. min. max. SSD 5.87 3 10 6.62 4 11 $CVaR_{\beta = 0.9}$ 6.07 3 11 6.49 3 12 $CVaR_{\beta = 0.8}$ 6.07 3 12 6.70 4 12 $CVaR_{\beta = 0.7}$ 6.30 3 11 6.74 4 12
 NDX (100) Index MV avg. min. max. avg. min. max. SSD 4.60 3 9 5.55 3 9 $CVaR_{\beta = 0.9}$ 4.65 3 10 5.53 2 9 $CVaR_{\beta = 0.8}$ 4.65 3 10 5.51 2 8 $CVaR_{\beta = 0.7}$ 4.64 3 9 5.50 3 8 FTSE (100) Index MV avg. min. max. avg. min. max. SSD 4.05 2 9 5.16 2 9 $CVaR_{\beta = 0.9}$ 3.98 2 9 5.11 2 9 $CVaR_{\beta = 0.8}$ 3.90 2 8 5.01 2 8 $CVaR_{\beta = 0.7}$ 3.91 3 9 5.17 2 9 S&P (500) Index MV avg. min. max. avg. min. max. SSD 5.87 3 10 6.62 4 11 $CVaR_{\beta = 0.9}$ 6.07 3 11 6.49 3 12 $CVaR_{\beta = 0.8}$ 6.07 3 12 6.70 4 12 $CVaR_{\beta = 0.7}$ 6.30 3 11 6.74 4 12
 [1] Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017 [2] Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 [3] Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463 [4] Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 [5] Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166 [6] Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 [7] Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377 [8] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 [9] Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164 [10] Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340 [11] Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103 [12] Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 [13] Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $p$-Laplacian equations on $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 [14] Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 [15] Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031 [16] Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167 [17] Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323 [18] M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 [19] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [20] Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.366