• Previous Article
    Pairs trading with illiquidity and position limits
  • JIMO Home
  • This Issue
  • Next Article
    An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility
November  2020, 16(6): 2971-2989. doi: 10.3934/jimo.2019089

Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function

1. 

Faculty of Mathematics and Computer Science University of Łódź, Banacha 22, 90-238 Łódź, Poland

2. 

Department of Mathematics, Hadhramout University, P.O. BOX : (50511-50512), Al-Mahrah, Yemen

* Corresponding author: Najeeb Abdulaleem

Received  July 2018 Revised  March 2019 Published  July 2019

In this paper, a nonconvex vector optimization problem with multiple interval-valued objective function and both inequality and equality constraints is considered. The functions constituting it are not necessarily differentiable, but they are $ E $-differentiable. The so-called $ E $-Karush-Kuhn-Tucker necessary optimality conditions are established for the considered $ E $-differentiable vector optimization problem with the multiple interval-valued objective function. Also the sufficient optimality conditions are derived for such interval-valued vector optimization problems under appropriate (generalized) $ E $-convexity hypotheses.

Citation: Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089
References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. of Inequalities and Applications, 313 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. A. Dar, Optimality conditions for invex interval valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983.  Google Scholar

[4]

A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods of Oper. Research, 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[5]

S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions – a generalized approach, European J. of Oper. Research, 94 (1996), 594-598.  doi: 10.1016/0377-2217(95)00055-0.  Google Scholar

[6]

X. Chen, Some properties of semi-E-convex functions, J. of Math. Anal. and Applications, 275 (2002), 251-262.  doi: 10.1016/S0022-247X(02)00325-6.  Google Scholar

[7]

X. Chen and Z. Li, On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity, J. of Indust. and Mgmt. Optimization, 14 (2018), 895-912.  doi: 10.3934/jimo.2017081.  Google Scholar

[8]

D. I. DucaE. DucaL. Lupsa and R. Blaga, E-convex functions, Bulletin of Appl. Computational Math., 43 (2000), 93-103.   Google Scholar

[9]

D. I. Duca and L. Lupsa, On the E-epigraph of an E-convex function, J. of Optimization Theory and Appl., 129 (2006), 341-348.  doi: 10.1007/s10957-006-9059-y.  Google Scholar

[10]

T. Emam and E. A. Youness, Semi strongly E-convex function, J. of Math. and Statistics, 1 (2005), 51-57.  doi: 10.3844/jmssp.2005.51.57.  Google Scholar

[11]

C. Fulga and V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions, European J. of Oper. Research, 192 (2009), 737-743.  doi: 10.1016/j.ejor.2007.11.056.  Google Scholar

[12]

J. S. Grace and P. Thangavelu, Properties of E-convex sets, Tamsui Oxford J. of Math. Sciences, 25 (2009), 1-7.   Google Scholar

[13]

E. Hosseinzade and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. of Appl. Math. & Informatics, 29 (2011), 1157-1165.   Google Scholar

[14]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Research, 14 (2014), 71-85.   Google Scholar

[15]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. and Computation, 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[16]

S. Karmakar and A. K. Bhunia, An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. of the Egyptian Math. Society, 22 (2014), 292-303.  doi: 10.1016/j.joems.2013.07.002.  Google Scholar

[17]

L. Li, S. Liu and J. Zhang, Univex interval-valued mapping with differentiability and its application in nonlinear programming, J. of Appl. Math., 2013 (2013), 8pp. doi: 10.1155/2013/383692.  Google Scholar

[18]

L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. of Ineq. and Appl., 2015 (2015), 19pp. doi: 10.1186/s13660-015-0692-6.  Google Scholar

[19]

L. Lupsa and D. I. Duca, E-convex programming, Revue d'Analyse Numerique et de Theorie de l'Approximation, 33 (2004), 183-187.   Google Scholar

[20]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.  Google Scholar

[21]

A. E.-M. A. Megahed, H. G. Gomma, E. A. Youness and A.-Z. H. El-Banna, Optimality conditions of E-convex programming for an E-differentiable function, J. of Ineq. and Appl., 2013 (2013), 11pp. doi: 10.1186/1029-242X-2013-246.  Google Scholar

[22]

F. Mirzapour, Some properties on E-convex and E-quasi-convex functions, in The 18th Seminar on Mathematical Analysis and its Applications, 26-27 Farvardin, 1388, Tarbiat Moallem University, 2009, 178–181. Google Scholar

[23]

R. E. Moore, Method and Applications of Interval Analysis, SIAM, Philadelphia, 1979.  Google Scholar

[24]

G.-R. Piao, L. Jiao and D. S. Kim, Optimality and mixed duality in multiobjective E-convex programming, J. of Ineq. and Appl., 2015 (2015), 13pp. doi: 10.1186/s13660-015-0854-6.  Google Scholar

[25]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. of Nonlinear Anal. and Optimization, 5 (2014), 91-103.   Google Scholar

[26]

D. SinghB. A. Dar and D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. of Oper. Research, 254 (2016), 29-39.  doi: 10.1016/j.ejor.2016.03.042.  Google Scholar

[27]

M. Soleimani-Damaneh, E-convexity and its generalizations, Int. J. of Computer Math., 88 (2011), 3335-3349.  doi: 10.1080/00207160.2011.589899.  Google Scholar

[28]

Y.-R. Syau and E. S. Lee, Some properties of E-convex functions, Appl. Mathematics Letters, 18 (2005), 1074-1080.  doi: 10.1016/j.aml.2004.09.018.  Google Scholar

[29]

H.-C. Wu, On interval-valued nonlinear programming problems, J. of Math. Anal. and Applications, 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[30]

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. of Oper. Research, 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[31]

X. M. Yang, On E-convex sets, E-convex functions, and E-convex programing, J. of Optimization Theory and Applications, 109 (2001), 699-704.  doi: 10.1023/A:1017532225395.  Google Scholar

[32]

E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.  Google Scholar

[33]

E. A. Youness, Optimality criteria in E-convex programming, Chaos, Solitons & Fractals, 12 (2001), 1737-1745.  doi: 10.1016/S0960-0779(00)00036-9.  Google Scholar

[34]

E. A. Youness, Characterization of efficient solution of multiobjective E-convex programming problems, Appl. Math. and Computation, 151 (2004), 755-761.  doi: 10.1016/S0096-3003(03)00526-5.  Google Scholar

[35]

J. K. ZhangS. Y. LiuL. F. Li and Q. X. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[36]

H.-C. Zhou and Y.-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing, 62, Springer, 2009, 1315–1323. doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

show all references

References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. of Inequalities and Applications, 313 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.  Google Scholar

[2]

I. AhmadD. Singh and B. A. Dar, Optimality conditions for invex interval valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983.  Google Scholar

[4]

A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods of Oper. Research, 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[5]

S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions – a generalized approach, European J. of Oper. Research, 94 (1996), 594-598.  doi: 10.1016/0377-2217(95)00055-0.  Google Scholar

[6]

X. Chen, Some properties of semi-E-convex functions, J. of Math. Anal. and Applications, 275 (2002), 251-262.  doi: 10.1016/S0022-247X(02)00325-6.  Google Scholar

[7]

X. Chen and Z. Li, On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity, J. of Indust. and Mgmt. Optimization, 14 (2018), 895-912.  doi: 10.3934/jimo.2017081.  Google Scholar

[8]

D. I. DucaE. DucaL. Lupsa and R. Blaga, E-convex functions, Bulletin of Appl. Computational Math., 43 (2000), 93-103.   Google Scholar

[9]

D. I. Duca and L. Lupsa, On the E-epigraph of an E-convex function, J. of Optimization Theory and Appl., 129 (2006), 341-348.  doi: 10.1007/s10957-006-9059-y.  Google Scholar

[10]

T. Emam and E. A. Youness, Semi strongly E-convex function, J. of Math. and Statistics, 1 (2005), 51-57.  doi: 10.3844/jmssp.2005.51.57.  Google Scholar

[11]

C. Fulga and V. Preda, Nonlinear programming with E-preinvex and local E-preinvex functions, European J. of Oper. Research, 192 (2009), 737-743.  doi: 10.1016/j.ejor.2007.11.056.  Google Scholar

[12]

J. S. Grace and P. Thangavelu, Properties of E-convex sets, Tamsui Oxford J. of Math. Sciences, 25 (2009), 1-7.   Google Scholar

[13]

E. Hosseinzade and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. of Appl. Math. & Informatics, 29 (2011), 1157-1165.   Google Scholar

[14]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Research, 14 (2014), 71-85.   Google Scholar

[15]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. and Computation, 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[16]

S. Karmakar and A. K. Bhunia, An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. of the Egyptian Math. Society, 22 (2014), 292-303.  doi: 10.1016/j.joems.2013.07.002.  Google Scholar

[17]

L. Li, S. Liu and J. Zhang, Univex interval-valued mapping with differentiability and its application in nonlinear programming, J. of Appl. Math., 2013 (2013), 8pp. doi: 10.1155/2013/383692.  Google Scholar

[18]

L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. of Ineq. and Appl., 2015 (2015), 19pp. doi: 10.1186/s13660-015-0692-6.  Google Scholar

[19]

L. Lupsa and D. I. Duca, E-convex programming, Revue d'Analyse Numerique et de Theorie de l'Approximation, 33 (2004), 183-187.   Google Scholar

[20]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.  Google Scholar

[21]

A. E.-M. A. Megahed, H. G. Gomma, E. A. Youness and A.-Z. H. El-Banna, Optimality conditions of E-convex programming for an E-differentiable function, J. of Ineq. and Appl., 2013 (2013), 11pp. doi: 10.1186/1029-242X-2013-246.  Google Scholar

[22]

F. Mirzapour, Some properties on E-convex and E-quasi-convex functions, in The 18th Seminar on Mathematical Analysis and its Applications, 26-27 Farvardin, 1388, Tarbiat Moallem University, 2009, 178–181. Google Scholar

[23]

R. E. Moore, Method and Applications of Interval Analysis, SIAM, Philadelphia, 1979.  Google Scholar

[24]

G.-R. Piao, L. Jiao and D. S. Kim, Optimality and mixed duality in multiobjective E-convex programming, J. of Ineq. and Appl., 2015 (2015), 13pp. doi: 10.1186/s13660-015-0854-6.  Google Scholar

[25]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. of Nonlinear Anal. and Optimization, 5 (2014), 91-103.   Google Scholar

[26]

D. SinghB. A. Dar and D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. of Oper. Research, 254 (2016), 29-39.  doi: 10.1016/j.ejor.2016.03.042.  Google Scholar

[27]

M. Soleimani-Damaneh, E-convexity and its generalizations, Int. J. of Computer Math., 88 (2011), 3335-3349.  doi: 10.1080/00207160.2011.589899.  Google Scholar

[28]

Y.-R. Syau and E. S. Lee, Some properties of E-convex functions, Appl. Mathematics Letters, 18 (2005), 1074-1080.  doi: 10.1016/j.aml.2004.09.018.  Google Scholar

[29]

H.-C. Wu, On interval-valued nonlinear programming problems, J. of Math. Anal. and Applications, 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[30]

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. of Oper. Research, 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[31]

X. M. Yang, On E-convex sets, E-convex functions, and E-convex programing, J. of Optimization Theory and Applications, 109 (2001), 699-704.  doi: 10.1023/A:1017532225395.  Google Scholar

[32]

E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.  Google Scholar

[33]

E. A. Youness, Optimality criteria in E-convex programming, Chaos, Solitons & Fractals, 12 (2001), 1737-1745.  doi: 10.1016/S0960-0779(00)00036-9.  Google Scholar

[34]

E. A. Youness, Characterization of efficient solution of multiobjective E-convex programming problems, Appl. Math. and Computation, 151 (2004), 755-761.  doi: 10.1016/S0096-3003(03)00526-5.  Google Scholar

[35]

J. K. ZhangS. Y. LiuL. F. Li and Q. X. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[36]

H.-C. Zhou and Y.-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing, 62, Springer, 2009, 1315–1323. doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[12]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[13]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (218)
  • HTML views (609)
  • Cited by (0)

Other articles
by authors

[Back to Top]