• Previous Article
    Fast calibration of the Libor market model with stochastic volatility and displaced diffusion
  • JIMO Home
  • This Issue
  • Next Article
    A new method for ranking decision making units using common set of weights: A developed criterion
doi: 10.3934/jimo.2019090

Pairs trading with illiquidity and position limits

1. 

Societe Generale Hong Kong, Three Pacific Place, 1 Queen's Road East, Hong Kong

2. 

Department of Mathematics and Information Technology, Education University of Hong Kong, Hong Kong SAR, China

3. 

Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

*Corresponding author

Received  August 2018 Revised  February 2019 Published  July 2019

We investigate the optimal investment among the money market account, a liquid risky asset (e.g. stock index) and an illiquid risky asset (e.g. individual stock), where the two risky assets are cointegrated. The illiquid risky asset is subject to a proportional transaction cost and the portfolio of the three assets faces certain position limits. We develop the optimal investment strategy to maximize the gain function, which is realized through an expected sum of discounted utilities given transaction costs and position limits. The problem formulation uses a singular control framework with cointegration that determines optimal trading boundaries among holding, selling and no-trading regions. We conduct comprehensive numerical analysis on the optimal investment strategy and features of the optimal trading boundaries given various levels of position limits.

Citation: Menglu Feng, Mei Choi Chiu, Hoi Ying Wong. Pairs trading with illiquidity and position limits. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019090
References:
[1]

A. AlmazanK. C. BrownM. Carlson and D. Chapman, Why constrain your mutual fund manager?, J. of Financial Econ., 73 (2004), 289-321. Google Scholar

[2]

M. AkianJ. L. Menaldi and and A. Sulem, On an investment-consumption model with transaction costs, SIAM J. on Control and Optimization, 34 (1996), 329-364. doi: 10.1137/S0363012993247159. Google Scholar

[3]

R. Baillie and T. Bollerslev, Common stochastic trends in a system of exchange rates, The J. of Finance, 44 (1989), 167-181. doi: 10.1111/j.1540-6261.1989.tb02410.x. Google Scholar

[4]

S. BasakA. Pavlova and A. Shapiro, Optimal asset allocation and risk shifting in money management, The Review of Financial Studies, 20 (2007), 1583-1621. Google Scholar

[5]

M. Cerchi and A. Havenner, Cointegration and stock prices: The random walk on Wall Street revisited, J. of Econ. Dynamics and Control, 12 (1988), 333-346. doi: 10.1016/0165-1889(88)90044-9. Google Scholar

[6]

K. ChenM. C. Chiu and H. Y. Wong, Time-consistent mean-variance pairs-trading under regime-switching cointegration, SIAM J. on Finan. Math., 10 (2019), 632-665. doi: 10.2139/ssrn.3250340. Google Scholar

[7]

K. Chen and H. Y. Wong, Time-consistent mean-variance hedging of an illiquid asset with a cointegrated liquid asset, Finan. Research Letters, 29 (2019), 184-192. doi: 10.1016/j.frl.2018.07.004. Google Scholar

[8]

M. C. Chiu and H. Y. Wong, Mean-variance portfolio selection of cointegrated assets, J. of Econ. Dynamics and Control, 35 (2011), 1369-1385. doi: 10.1016/j.jedc.2011.04.003. Google Scholar

[9]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liabilities, European J. of Oper. Research, 223 (2012), 785-793. doi: 10.1016/j.ejor.2012.07.009. Google Scholar

[10]

M. C. Chiu and H. Y. Wong, Optimal investment for an insurer with cointegrated assets: CRRA utility, Insurance: Math. and Econ., 52 (2013), 52-64. doi: 10.1016/j.insmatheco.2012.11.004. Google Scholar

[11]

M. C. Chiu and H. Y. Wong, Dynamic cointegrated pairs trading: Mean-variance time-consistent strategies, J. of Computational and Applied Math., 290 (2015), 516-534. doi: 10.1016/j.cam.2015.06.004. Google Scholar

[12]

M. DaiH. Jin and H. Liu, Illiquidity, position limits, and optimal investment for mutual funds, J. of Econ. Theory, 146 (2011), 1598-1630. doi: 10.1016/j.jet.2011.03.014. Google Scholar

[13]

M. Davis and A. Norman, Portfolio selection with transaction costs, Math. of Ops. Research, 15 (1990), 676-713. doi: 10.1287/moor.15.4.676. Google Scholar

[14]

J. Duan and S. R. Pliska, Option valuation with co-integrated asset prices, J. of Econ. Dynamics and Control, 28 (2004), 727-754. doi: 10.1016/S0165-1889(03)00042-3. Google Scholar

[15]

R. Engle and C. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55 (1987), 251-276. doi: 10.2307/1913236. Google Scholar

[16]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. on Scientific Computing, 23 (2002), 2095-2122. doi: 10.1137/S1064827500382324. Google Scholar

[17]

E. GatevW. N. Goetzmann and K. G. Rouwenhorst, Pairs trading: Performance of a relative-value arbitrage rule, The Review of Finan. Studies, 19 (2006), 797-827. doi: 10.1093/rfs/hhj020. Google Scholar

[18]

J. Karceski, M. Livingston and E. S. O'Neal, Portfolio transactions costs at US equity mutual funds, Working Paper, (2004).Google Scholar

[19]

Y. Lei and J. Xu, Costly arbitrage through pairs trading, J. of Econ. Dynamics and Control, 56 (2015), 1-19. doi: 10.1016/j.jedc.2015.04.006. Google Scholar

[20]

J. Liu and A. Timmermann, Optimal convergence trade strategies, The Review of Finan. Studies, 26 (2013), 1048-1086. doi: 10.1093/rfs/hhs130. Google Scholar

[21]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Econ. Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X. Google Scholar

[22]

A. Tourin and R. Yan, Dynamic pairs trading using the stochastic control approach, J. of Econ. Dynamics and Control, 37 (2013), 1972-1981. doi: 10.1016/j.jedc.2013.05.010. Google Scholar

[23]

N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Institute Monographs, 29, Springer, New York, 2013. doi: 10.1007/978-1-4614-4286-8. Google Scholar

[24]

R. Wermers, Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses, The J. of Finance, 55 (2000), 1655-1695. doi: 10.1111/0022-1082.00263. Google Scholar

show all references

References:
[1]

A. AlmazanK. C. BrownM. Carlson and D. Chapman, Why constrain your mutual fund manager?, J. of Financial Econ., 73 (2004), 289-321. Google Scholar

[2]

M. AkianJ. L. Menaldi and and A. Sulem, On an investment-consumption model with transaction costs, SIAM J. on Control and Optimization, 34 (1996), 329-364. doi: 10.1137/S0363012993247159. Google Scholar

[3]

R. Baillie and T. Bollerslev, Common stochastic trends in a system of exchange rates, The J. of Finance, 44 (1989), 167-181. doi: 10.1111/j.1540-6261.1989.tb02410.x. Google Scholar

[4]

S. BasakA. Pavlova and A. Shapiro, Optimal asset allocation and risk shifting in money management, The Review of Financial Studies, 20 (2007), 1583-1621. Google Scholar

[5]

M. Cerchi and A. Havenner, Cointegration and stock prices: The random walk on Wall Street revisited, J. of Econ. Dynamics and Control, 12 (1988), 333-346. doi: 10.1016/0165-1889(88)90044-9. Google Scholar

[6]

K. ChenM. C. Chiu and H. Y. Wong, Time-consistent mean-variance pairs-trading under regime-switching cointegration, SIAM J. on Finan. Math., 10 (2019), 632-665. doi: 10.2139/ssrn.3250340. Google Scholar

[7]

K. Chen and H. Y. Wong, Time-consistent mean-variance hedging of an illiquid asset with a cointegrated liquid asset, Finan. Research Letters, 29 (2019), 184-192. doi: 10.1016/j.frl.2018.07.004. Google Scholar

[8]

M. C. Chiu and H. Y. Wong, Mean-variance portfolio selection of cointegrated assets, J. of Econ. Dynamics and Control, 35 (2011), 1369-1385. doi: 10.1016/j.jedc.2011.04.003. Google Scholar

[9]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liabilities, European J. of Oper. Research, 223 (2012), 785-793. doi: 10.1016/j.ejor.2012.07.009. Google Scholar

[10]

M. C. Chiu and H. Y. Wong, Optimal investment for an insurer with cointegrated assets: CRRA utility, Insurance: Math. and Econ., 52 (2013), 52-64. doi: 10.1016/j.insmatheco.2012.11.004. Google Scholar

[11]

M. C. Chiu and H. Y. Wong, Dynamic cointegrated pairs trading: Mean-variance time-consistent strategies, J. of Computational and Applied Math., 290 (2015), 516-534. doi: 10.1016/j.cam.2015.06.004. Google Scholar

[12]

M. DaiH. Jin and H. Liu, Illiquidity, position limits, and optimal investment for mutual funds, J. of Econ. Theory, 146 (2011), 1598-1630. doi: 10.1016/j.jet.2011.03.014. Google Scholar

[13]

M. Davis and A. Norman, Portfolio selection with transaction costs, Math. of Ops. Research, 15 (1990), 676-713. doi: 10.1287/moor.15.4.676. Google Scholar

[14]

J. Duan and S. R. Pliska, Option valuation with co-integrated asset prices, J. of Econ. Dynamics and Control, 28 (2004), 727-754. doi: 10.1016/S0165-1889(03)00042-3. Google Scholar

[15]

R. Engle and C. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55 (1987), 251-276. doi: 10.2307/1913236. Google Scholar

[16]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. on Scientific Computing, 23 (2002), 2095-2122. doi: 10.1137/S1064827500382324. Google Scholar

[17]

E. GatevW. N. Goetzmann and K. G. Rouwenhorst, Pairs trading: Performance of a relative-value arbitrage rule, The Review of Finan. Studies, 19 (2006), 797-827. doi: 10.1093/rfs/hhj020. Google Scholar

[18]

J. Karceski, M. Livingston and E. S. O'Neal, Portfolio transactions costs at US equity mutual funds, Working Paper, (2004).Google Scholar

[19]

Y. Lei and J. Xu, Costly arbitrage through pairs trading, J. of Econ. Dynamics and Control, 56 (2015), 1-19. doi: 10.1016/j.jedc.2015.04.006. Google Scholar

[20]

J. Liu and A. Timmermann, Optimal convergence trade strategies, The Review of Finan. Studies, 26 (2013), 1048-1086. doi: 10.1093/rfs/hhs130. Google Scholar

[21]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Econ. Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X. Google Scholar

[22]

A. Tourin and R. Yan, Dynamic pairs trading using the stochastic control approach, J. of Econ. Dynamics and Control, 37 (2013), 1972-1981. doi: 10.1016/j.jedc.2013.05.010. Google Scholar

[23]

N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Institute Monographs, 29, Springer, New York, 2013. doi: 10.1007/978-1-4614-4286-8. Google Scholar

[24]

R. Wermers, Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses, The J. of Finance, 55 (2000), 1655-1695. doi: 10.1111/0022-1082.00263. Google Scholar

Figure 1.  Optimal investment boundaries for the illiquid asset without position limits. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 2.  Optimal investment boundaries for the illiquid asset with position limits. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Figure 3.  Optimal investment boundaries for the illiquid asset at $ x = 15 $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Figure 4.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various transaction cost rates $ \alpha $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 5.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various correlation coefficients $ \rho $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 6.  Optimal investment boundaries for creating positions with the illiquid asset at $ x = 15 $ with various lower bound $ \underset{\bar{}}{l} $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 7.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various $ \kappa $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Table 1.  Summary of Default Parameters for Numerical Analysis
Parameter Value Parameter Value
$ \beta_1\; \; $ 0.1 $ \rho\; \; $ 0.8
$ \beta_2\; \; $ 0.15 $ \alpha\; \; $ 0.01
$ \delta_1\; \; $ 1 $ \theta\; \; $ 0.01
$ \delta_2\; \; $ 0.4 $ \gamma\; \; $ 0.5
$ \sigma_1\; \; $ 0.2 $ r\; \; $ 0.01
$ \sigma_2\; \; $ 0.25 $ \nu\; \; $ 0.02
$ \lambda\; \; $ 1
Parameter Value Parameter Value
$ \beta_1\; \; $ 0.1 $ \rho\; \; $ 0.8
$ \beta_2\; \; $ 0.15 $ \alpha\; \; $ 0.01
$ \delta_1\; \; $ 1 $ \theta\; \; $ 0.01
$ \delta_2\; \; $ 0.4 $ \gamma\; \; $ 0.5
$ \sigma_1\; \; $ 0.2 $ r\; \; $ 0.01
$ \sigma_2\; \; $ 0.25 $ \nu\; \; $ 0.02
$ \lambda\; \; $ 1
[1]

Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control & Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489

[2]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[3]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[4]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[5]

Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39

[6]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[7]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[8]

Chun Shen, Wancheng Sheng, Meina Sun. The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system. Communications on Pure & Applied Analysis, 2018, 17 (2) : 391-411. doi: 10.3934/cpaa.2018022

[9]

Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27

[10]

Min Shen, Gabriel Turinici. Liquidity generated by heterogeneous beliefs and costly estimations. Networks & Heterogeneous Media, 2012, 7 (2) : 349-361. doi: 10.3934/nhm.2012.7.349

[11]

William Ott, Qiudong Wang. Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1035-1054. doi: 10.3934/dcds.2010.26.1035

[12]

Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165

[13]

Annamaria Canino, Luigi Montoro, Berardino Sciunzi. The jumping problem for nonlocal singular problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6747-6760. doi: 10.3934/dcds.2019293

[14]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[15]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[16]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[17]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[18]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[19]

Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure & Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541

[20]

G. P. Trachanas, Nikolaos B. Zographopoulos. A strongly singular parabolic problem on an unbounded domain. Communications on Pure & Applied Analysis, 2014, 13 (2) : 789-809. doi: 10.3934/cpaa.2014.13.789

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (17)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]