# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2019096

## $\bf{M/G/1}$ fault-tolerant machining system with imperfection

 1 Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333 031, India 2 Mathematics Department, Faculty of Science, Menofia University, Menofia, 32511, Egypt

* Corresponding author: Chandra Shekhar

Received  December 2018 Revised  February 2019 Published  July 2019

Fund Project: The third author is supported by CSIR, New Delhi (India) grant: 09/719(0068)/2015-EMR-1. Also, First three authors are supported by DST FIST (India) grant SR/FST/MSI-090/2013(C).

The internet of things (IoT) is an emerging archetype of technology for the guaranteed quality of services (QoS). The availability of the uninterrupted power supply (UPS) is one of the most challenging criteria in the successful implementation of the service system of IoT. In this paper, we consider a fault-tolerant power generation system of finite operating machines along with warm standby machine provisioning. The time-to-failure for each of the operating and standby machines are assumed to be exponentially distributed. The time-to-repair by the single service facility for the failed machine follows the arbitrary distribution. For modeling purpose, we have also incorporated realistic machining behaviors like imperfect coverage of the failure of machines, switching failure of standby machine, reboot delay, switch over delay, etc. For the evaluation of the explicit expression for steady-state probabilities of the system, the only required input is the Laplace-Stieltjes transform (LST) of the repair time distribution. The step-wise recursive procedure, illustrative examples, and numerical results have been presented for the following different type of repair time distribution: exponential ($M$), $n$-stage Erlang ($Er_{n}$), deterministic ($D$), uniform ($U(a, b)$), $n$-stage generalized Erlang ($GE_n$) and hyperexponential ($HE_n$). Concluding remarks and future scopes have also been included.

Citation: Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $\bf{M/G/1}$ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019096
##### References:
 [1] D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proceedings of the Cambridge Phil. Society, 51 (1955), 433-441.  doi: 10.1017/S0305004100030437.  Google Scholar [2] U. C. Gupta and T. S. S. S. Rao, A recursive method to compute the steady state probabilities of the machine interference model: $(M/G/1)/K$, Comp. and Ops. Research, 21 (1994), 597-605.   Google Scholar [3] U. C. Gupta and T. S. S. S. Rao, On the $M/G/1$ machine interference model with spares, European J. of Oper. Research, 89 (1996), 164-171.   Google Scholar [4] L. Haque and M. J. Armstrong, A survey of the machine interference problem, European J. of Oper. Research, 179 (2007), 469-482.  doi: 10.1016/j.ejor.2006.02.036.  Google Scholar [5] P. Hokstad, A supplementary variable technique applied to the $M/G/1$ queue, Scandinavian J. of Stats., 2 (1975), 95-98.   Google Scholar [6] H. I. Huang and J. C. Ke, Comparative analysis on a redundant repairable system with different configurations, Engineering Computations, 26 (2009), 422-439.  doi: 10.1108/02644400910959197.  Google Scholar [7] M. Jain, Availability prediction of imperfect fault coverage system with reboot and common cause failure, Int. J. of Oper. Research, 17 (2013), 374-397.  doi: 10.1504/IJOR.2013.054441.  Google Scholar [8] M. Jain, C. Shekhar and S. Shukla, Markov model for switching failure of warm spares in machine repair system, J. of Reliability and Stat. Studies, 7 (2014), 57-68.   Google Scholar [9] T. Jiang, L. Liu and J. Li, Analysis of the $M/G/1$ queue in multi-phase random environment with disasters, J. of Math. Analysis and Applications, 430, 857–873. doi: 10.1016/j.jmaa.2015.05.028.  Google Scholar [10] J. C. Ke, T. H. Liu and D. Y. Yang, Machine repairing systems with standby switching failure, Comp. and Indust. Engineering, 99 (2016), 223-228.  doi: 10.1016/j.cie.2016.07.016.  Google Scholar [11] A. Kumar and M. Agarwal, A review of standby systems, IEEE Transaction on Reliability, 29 (1980), 290-294.   Google Scholar [12] C. C. Kuo and J. C. Ke, Comparative analysis of standby systems with unreliable server and switching failure, Reliability Engineering and System Safety, 145 (2016), 74-82.  doi: 10.1016/j.ress.2015.09.001.  Google Scholar [13] E. E. Lewis, Introduction to Reliability Engineering, 2$^{nd}$ ed., John Wiley & Sons, New York, 1996.  Google Scholar [14] C. D. Liou, Optimization analysis of the machine repair problem with multiple vacations and working breakdowns, J. of Indust. and Mgmt. Optimization, 11 (2015), 83-104.  doi: 10.3934/jimo.2015.11.83.  Google Scholar [15] M. Manglik and M. Ram, Multistate multifailures system analysis with reworking strategy and imperfect fault coverage, in Advances in System Reliability Engineering, Academic Press, 2019, 243-265. doi: 10.1016/B978-0-12-815906-4.00010-5.  Google Scholar [16] M. S. Moustafa, Reliability analysis of $K$-out-of-$N$:$G$ systems with dependent failures and imperfect coverage, Reliability Engineering and System Safety, 58 (1997), 15-17.   Google Scholar [17] H. Pham, Reliability analysis of a high voltage system with dependent failures and imperfect coverage, Reliability Engineering and System Safety, 37 (1992), 25-28.  doi: 10.1016/0951-8320(92)90054-O.  Google Scholar [18] C. Shekhar, M. Jain and S. Bhatia, Fuzzy analysis of machine repair problem with switching failure and reboot, J. of Reliability and Stat. Studies, 7 (2014), 41-55.   Google Scholar [19] C. Shekhar, M. Jain, A. A. Raina and J. Iqbal, Reliability prediction of fault tolerant machining system with reboot and recovery delay, Int. J. of System Assurance Engineering and Mgmt., 9 (2018), 377-400.  doi: 10.1007/s13198-017-0680-y.  Google Scholar [20] C. Shekhar, M. Jain, A. A. Raina and R. P. Mishra, Sensitivity analysis of repairable redundant system with switching failure and geometric reneging, Decision Science Letters, 6 (2017), 337-350.  doi: 10.5267/j.dsl.2017.2.004.  Google Scholar [21] C. Shekhar, A. A. Raina, A. Kumar and J. Iqbal, A survey on queues in machining system: Progress from 2010 to 2017, Yugoslav J. of Ops. Research, 27 (2017), 391-413.  doi: 10.2298/YJOR161117006R.  Google Scholar [22] K. H. Wang and Y. J. Chen, Comparative analysis of availability between three systems with general repair times, reboot delay and switching failures, Appl. Math. and Computation, 215 (2009), 384-394.  doi: 10.1016/j.amc.2009.05.023.  Google Scholar [23] K. H. Wang, J. H. Su and D. Y. Yang, Analysis and optimization of an $M/G/1$ machine repair problem with multiple imperfect coverage, Appl. Math. and Computation, 242 (2014), 590-600.  doi: 10.1016/j.amc.2014.05.132.  Google Scholar [24] D. Y. Yang and C. L. Tsao, Reliability and availability analysis of standby systems with working vacations and retrial of failed components, Reliability Engineering and System Safety, 182 (2019), 46-55.  doi: 10.1016/j.ress.2018.09.020.  Google Scholar

show all references

##### References:
 [1] D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proceedings of the Cambridge Phil. Society, 51 (1955), 433-441.  doi: 10.1017/S0305004100030437.  Google Scholar [2] U. C. Gupta and T. S. S. S. Rao, A recursive method to compute the steady state probabilities of the machine interference model: $(M/G/1)/K$, Comp. and Ops. Research, 21 (1994), 597-605.   Google Scholar [3] U. C. Gupta and T. S. S. S. Rao, On the $M/G/1$ machine interference model with spares, European J. of Oper. Research, 89 (1996), 164-171.   Google Scholar [4] L. Haque and M. J. Armstrong, A survey of the machine interference problem, European J. of Oper. Research, 179 (2007), 469-482.  doi: 10.1016/j.ejor.2006.02.036.  Google Scholar [5] P. Hokstad, A supplementary variable technique applied to the $M/G/1$ queue, Scandinavian J. of Stats., 2 (1975), 95-98.   Google Scholar [6] H. I. Huang and J. C. Ke, Comparative analysis on a redundant repairable system with different configurations, Engineering Computations, 26 (2009), 422-439.  doi: 10.1108/02644400910959197.  Google Scholar [7] M. Jain, Availability prediction of imperfect fault coverage system with reboot and common cause failure, Int. J. of Oper. Research, 17 (2013), 374-397.  doi: 10.1504/IJOR.2013.054441.  Google Scholar [8] M. Jain, C. Shekhar and S. Shukla, Markov model for switching failure of warm spares in machine repair system, J. of Reliability and Stat. Studies, 7 (2014), 57-68.   Google Scholar [9] T. Jiang, L. Liu and J. Li, Analysis of the $M/G/1$ queue in multi-phase random environment with disasters, J. of Math. Analysis and Applications, 430, 857–873. doi: 10.1016/j.jmaa.2015.05.028.  Google Scholar [10] J. C. Ke, T. H. Liu and D. Y. Yang, Machine repairing systems with standby switching failure, Comp. and Indust. Engineering, 99 (2016), 223-228.  doi: 10.1016/j.cie.2016.07.016.  Google Scholar [11] A. Kumar and M. Agarwal, A review of standby systems, IEEE Transaction on Reliability, 29 (1980), 290-294.   Google Scholar [12] C. C. Kuo and J. C. Ke, Comparative analysis of standby systems with unreliable server and switching failure, Reliability Engineering and System Safety, 145 (2016), 74-82.  doi: 10.1016/j.ress.2015.09.001.  Google Scholar [13] E. E. Lewis, Introduction to Reliability Engineering, 2$^{nd}$ ed., John Wiley & Sons, New York, 1996.  Google Scholar [14] C. D. Liou, Optimization analysis of the machine repair problem with multiple vacations and working breakdowns, J. of Indust. and Mgmt. Optimization, 11 (2015), 83-104.  doi: 10.3934/jimo.2015.11.83.  Google Scholar [15] M. Manglik and M. Ram, Multistate multifailures system analysis with reworking strategy and imperfect fault coverage, in Advances in System Reliability Engineering, Academic Press, 2019, 243-265. doi: 10.1016/B978-0-12-815906-4.00010-5.  Google Scholar [16] M. S. Moustafa, Reliability analysis of $K$-out-of-$N$:$G$ systems with dependent failures and imperfect coverage, Reliability Engineering and System Safety, 58 (1997), 15-17.   Google Scholar [17] H. Pham, Reliability analysis of a high voltage system with dependent failures and imperfect coverage, Reliability Engineering and System Safety, 37 (1992), 25-28.  doi: 10.1016/0951-8320(92)90054-O.  Google Scholar [18] C. Shekhar, M. Jain and S. Bhatia, Fuzzy analysis of machine repair problem with switching failure and reboot, J. of Reliability and Stat. Studies, 7 (2014), 41-55.   Google Scholar [19] C. Shekhar, M. Jain, A. A. Raina and J. Iqbal, Reliability prediction of fault tolerant machining system with reboot and recovery delay, Int. J. of System Assurance Engineering and Mgmt., 9 (2018), 377-400.  doi: 10.1007/s13198-017-0680-y.  Google Scholar [20] C. Shekhar, M. Jain, A. A. Raina and R. P. Mishra, Sensitivity analysis of repairable redundant system with switching failure and geometric reneging, Decision Science Letters, 6 (2017), 337-350.  doi: 10.5267/j.dsl.2017.2.004.  Google Scholar [21] C. Shekhar, A. A. Raina, A. Kumar and J. Iqbal, A survey on queues in machining system: Progress from 2010 to 2017, Yugoslav J. of Ops. Research, 27 (2017), 391-413.  doi: 10.2298/YJOR161117006R.  Google Scholar [22] K. H. Wang and Y. J. Chen, Comparative analysis of availability between three systems with general repair times, reboot delay and switching failures, Appl. Math. and Computation, 215 (2009), 384-394.  doi: 10.1016/j.amc.2009.05.023.  Google Scholar [23] K. H. Wang, J. H. Su and D. Y. Yang, Analysis and optimization of an $M/G/1$ machine repair problem with multiple imperfect coverage, Appl. Math. and Computation, 242 (2014), 590-600.  doi: 10.1016/j.amc.2014.05.132.  Google Scholar [24] D. Y. Yang and C. L. Tsao, Reliability and availability analysis of standby systems with working vacations and retrial of failed components, Reliability Engineering and System Safety, 182 (2019), 46-55.  doi: 10.1016/j.ress.2018.09.020.  Google Scholar
The state transition diagram
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\mu$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\lambda$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\nu$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\beta$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\sigma$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $p$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $c$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $q$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\mu$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\lambda$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\nu$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\beta$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $\sigma$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $p$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $c$ for different repair time distribution
State probability $P_{2, 1}$ and availability of the system ($Av$) wrt $q$ for different repair time distribution
State probabilities and availability of the system
 Distribution $M$ $Er_3$ $D$ $U(a, b)$ $GE_4$ $HE_2$ Parameter(s) $\mu=25$ $\mu=25$ $\mu=25$ $a=0.02$ $\mu_1=60$ $\alpha_1=0.2$ $b=0.06$ $\mu_2=100$ $\alpha_2=0.8$ $\mu_3=120$ $\mu_1=15$ $\mu_4=200$ $\mu_2=30$ $P_{21}$ 0.9123644 0.9123430 0.9123320 0.9123347 0.9123417 0.9123711 $P_{20}$ 0.0437935 0.0443790 0.0446796 0.0446037 0.0444134 0.0436102 $P_{10}$ 0.0371515 0.0365876 0.0362980 0.0363711 0.0365544 0.0373280 $Q_{11}$ 0.0054742 0.0054741 0.0054740 0.0054740 0.0054741 0.0054742 $R_O$ 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 $R_S$ 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 $Av$ 0.9561579 0.9567219 0.9570115 0.9569385 0.9567551 0.9559813
 Distribution $M$ $Er_3$ $D$ $U(a, b)$ $GE_4$ $HE_2$ Parameter(s) $\mu=25$ $\mu=25$ $\mu=25$ $a=0.02$ $\mu_1=60$ $\alpha_1=0.2$ $b=0.06$ $\mu_2=100$ $\alpha_2=0.8$ $\mu_3=120$ $\mu_1=15$ $\mu_4=200$ $\mu_2=30$ $P_{21}$ 0.9123644 0.9123430 0.9123320 0.9123347 0.9123417 0.9123711 $P_{20}$ 0.0437935 0.0443790 0.0446796 0.0446037 0.0444134 0.0436102 $P_{10}$ 0.0371515 0.0365876 0.0362980 0.0363711 0.0365544 0.0373280 $Q_{11}$ 0.0054742 0.0054741 0.0054740 0.0054740 0.0054741 0.0054742 $R_O$ 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 $R_S$ 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 $Av$ 0.9561579 0.9567219 0.9570115 0.9569385 0.9567551 0.9559813
Performance indices corresponding to Fig. 2
 Indices Distribution $\mu$ 24 26 28 30 32 34 36 38 40 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572
 Indices Distribution $\mu$ 24 26 28 30 32 34 36 38 40 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572
Performance indices corresponding to Fig. 3
 Indices Distribution $\lambda$ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 $P_{2, 1}$ $M$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Er_3$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $D$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $U(a, b)$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $GE_4$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $HE_2$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Av$ $M$ 0.9905 0.9860 0.9816 0.9773 0.9730 0.9687 0.9645 0.9603 0.9562 $Er_3$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9567 $D$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9692 0.9651 0.9610 0.9570 $U(a, b)$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9691 0.9650 0.9610 0.9569 $GE_4$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9568 $HE_2$ 0.9905 0.9860 0.9816 0.9772 0.9729 0.9686 0.9644 0.9602 0.9560
 Indices Distribution $\lambda$ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 $P_{2, 1}$ $M$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Er_3$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $D$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $U(a, b)$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $GE_4$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $HE_2$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Av$ $M$ 0.9905 0.9860 0.9816 0.9773 0.9730 0.9687 0.9645 0.9603 0.9562 $Er_3$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9567 $D$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9692 0.9651 0.9610 0.9570 $U(a, b)$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9691 0.9650 0.9610 0.9569 $GE_4$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9568 $HE_2$ 0.9905 0.9860 0.9816 0.9772 0.9729 0.9686 0.9644 0.9602 0.9560
Performance indices corresponding to Fig. 4
 Indices Distribution $\nu$ 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 $P_{2, 1}$ $M$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9114 0.9105 $Er_3$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $D$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $U(a, b)$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $GE_4$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $HE_2$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9115 0.9105 $Av$ $M$ 0.9565 0.9564 0.9564 0.9563 0.9563 0.9562 0.9562 0.9561 0.9561 $Er_3$ 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 0.9566 $D$ 0.9572 0.9572 0.9572 0.9571 0.9571 0.9570 0.9570 0.9570 0.9569 $U(a, b)$ 0.9572 0.9571 0.9571 0.9571 0.9570 0.9570 0.9569 0.9569 0.9569 $GE_4$ 0.9570 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 $HE_2$ 0.9563 0.9563 0.9562 0.9562 0.9561 0.9560 0.9560 0.9559 0.9559
 Indices Distribution $\nu$ 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 $P_{2, 1}$ $M$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9114 0.9105 $Er_3$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $D$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $U(a, b)$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $GE_4$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $HE_2$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9115 0.9105 $Av$ $M$ 0.9565 0.9564 0.9564 0.9563 0.9563 0.9562 0.9562 0.9561 0.9561 $Er_3$ 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 0.9566 $D$ 0.9572 0.9572 0.9572 0.9571 0.9571 0.9570 0.9570 0.9570 0.9569 $U(a, b)$ 0.9572 0.9571 0.9571 0.9571 0.9570 0.9570 0.9569 0.9569 0.9569 $GE_4$ 0.9570 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 $HE_2$ 0.9563 0.9563 0.9562 0.9562 0.9561 0.9560 0.9560 0.9559 0.9559
Performance indices corresponding to Fig. 5
 Indices Distribution $\beta$ 50 55 60 65 70 75 80 85 90 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $U(a, b)$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $GE_4$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $HE_2$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9126 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572 $U(a, b)$ 0.9564 0.9565 0.9566 0.9568 0.9569 0.9569 0.9570 0.9571 0.9571 $GE_4$ 0.9562 0.9563 0.9565 0.9566 0.9567 0.9568 0.9568 0.9569 0.9569 $HE_2$ 0.9554 0.9556 0.9557 0.9558 0.9559 0.9560 0.9561 0.9561 0.9562
 Indices Distribution $\beta$ 50 55 60 65 70 75 80 85 90 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $U(a, b)$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $GE_4$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $HE_2$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9126 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572 $U(a, b)$ 0.9564 0.9565 0.9566 0.9568 0.9569 0.9569 0.9570 0.9571 0.9571 $GE_4$ 0.9562 0.9563 0.9565 0.9566 0.9567 0.9568 0.9568 0.9569 0.9569 $HE_2$ 0.9554 0.9556 0.9557 0.9558 0.9559 0.9560 0.9561 0.9561 0.9562
Performance indices corresponding to Fig. 6
 Indices Distribution $\sigma$ 30 35 40 45 50 55 60 65 70 $P_{2, 1}$ $M$ 0.9090 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Er_3$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $D$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $U(a, b)$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $GE_4$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $HE_2$ 0.9091 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Av$ $M$ 0.9527 0.9539 0.9549 0.9556 0.9562 0.9566 0.9570 0.9574 0.9577 $Er_3$ 0.9532 0.9545 0.9554 0.9561 0.9567 0.9572 0.9576 0.9579 0.9582 $D$ 0.9535 0.9548 0.9557 0.9564 0.9570 0.9575 0.9579 0.9582 0.9585 $U(a, b)$ 0.9535 0.9547 0.9556 0.9564 0.9569 0.9574 0.9578 0.9581 0.9584 $GE_4$ 0.9533 0.9545 0.9554 0.9562 0.9568 0.9572 0.9576 0.9580 0.9583 $HE_2$ 0.9525 0.9537 0.9547 0.9554 0.9560 0.9565 0.9569 0.9572 0.9575
 Indices Distribution $\sigma$ 30 35 40 45 50 55 60 65 70 $P_{2, 1}$ $M$ 0.9090 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Er_3$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $D$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $U(a, b)$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $GE_4$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $HE_2$ 0.9091 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Av$ $M$ 0.9527 0.9539 0.9549 0.9556 0.9562 0.9566 0.9570 0.9574 0.9577 $Er_3$ 0.9532 0.9545 0.9554 0.9561 0.9567 0.9572 0.9576 0.9579 0.9582 $D$ 0.9535 0.9548 0.9557 0.9564 0.9570 0.9575 0.9579 0.9582 0.9585 $U(a, b)$ 0.9535 0.9547 0.9556 0.9564 0.9569 0.9574 0.9578 0.9581 0.9584 $GE_4$ 0.9533 0.9545 0.9554 0.9562 0.9568 0.9572 0.9576 0.9580 0.9583 $HE_2$ 0.9525 0.9537 0.9547 0.9554 0.9560 0.9565 0.9569 0.9572 0.9575
Performance indices corresponding to Fig. 7
 Indices Distribution $p$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Er_3$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $D$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $U(a, b)$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $GE_4$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $HE_2$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Av$ $M$ 0.9646 0.9635 0.9625 0.9614 0.9604 0.9593 0.9583 0.9572 0.9562 $Er_3$ 0.9652 0.9641 0.9630 0.9620 0.9609 0.9599 0.9588 0.9578 0.9567 $D$ 0.9655 0.9644 0.9633 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 $U(a, b)$ 0.9654 0.9643 0.9633 0.9622 0.9611 0.9601 0.9590 0.9580 0.9569 $GE_4$ 0.9652 0.9641 0.9631 0.9620 0.9610 0.9599 0.9589 0.9578 0.9568 $HE_2$ 0.9644 0.9634 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 0.9560
 Indices Distribution $p$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Er_3$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $D$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $U(a, b)$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $GE_4$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $HE_2$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Av$ $M$ 0.9646 0.9635 0.9625 0.9614 0.9604 0.9593 0.9583 0.9572 0.9562 $Er_3$ 0.9652 0.9641 0.9630 0.9620 0.9609 0.9599 0.9588 0.9578 0.9567 $D$ 0.9655 0.9644 0.9633 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 $U(a, b)$ 0.9654 0.9643 0.9633 0.9622 0.9611 0.9601 0.9590 0.9580 0.9569 $GE_4$ 0.9652 0.9641 0.9631 0.9620 0.9610 0.9599 0.9589 0.9578 0.9568 $HE_2$ 0.9644 0.9634 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 0.9560
Performance indices corresponding to Fig. 8
 Indices Distribution $c$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9113 0.9118 0.9124 0.9129 $Er_3$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $D$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $U(a, b)$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $GE_4$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $HE_2$ 0.9085 0.9091 0.9096 0.9102 0.9107 0.9113 0.9118 0.9124 0.9129 $Av$ $M$ 0.9521 0.9527 0.9533 0.9538 0.9544 0.9550 0.9556 0.9562 0.9567 $Er_3$ 0.9527 0.9532 0.9538 0.9544 0.9550 0.9556 0.9561 0.9567 0.9573 $D$ 0.9530 0.9535 0.9541 0.9547 0.9553 0.9558 0.9564 0.9570 0.9576 $U(a, b)$ 0.9529 0.9535 0.9540 0.9546 0.9552 0.9558 0.9564 0.9569 0.9575 $GE_4$ 0.9527 0.9533 0.9539 0.9544 0.9550 0.9556 0.9562 0.9568 0.9573 $HE_2$ 0.9519 0.9525 0.9531 0.9537 0.9542 0.9548 0.9554 0.9560 0.9566
 Indices Distribution $c$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9113 0.9118 0.9124 0.9129 $Er_3$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $D$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $U(a, b)$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $GE_4$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $HE_2$ 0.9085 0.9091 0.9096 0.9102 0.9107 0.9113 0.9118 0.9124 0.9129 $Av$ $M$ 0.9521 0.9527 0.9533 0.9538 0.9544 0.9550 0.9556 0.9562 0.9567 $Er_3$ 0.9527 0.9532 0.9538 0.9544 0.9550 0.9556 0.9561 0.9567 0.9573 $D$ 0.9530 0.9535 0.9541 0.9547 0.9553 0.9558 0.9564 0.9570 0.9576 $U(a, b)$ 0.9529 0.9535 0.9540 0.9546 0.9552 0.9558 0.9564 0.9569 0.9575 $GE_4$ 0.9527 0.9533 0.9539 0.9544 0.9550 0.9556 0.9562 0.9568 0.9573 $HE_2$ 0.9519 0.9525 0.9531 0.9537 0.9542 0.9548 0.9554 0.9560 0.9566
Performance indices corresponding to Fig. 9
 Indices Distribution $q$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Er_3$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $D$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $U(a, b)$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $GE_4$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $HE_2$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Av$ $M$ 0.9465 0.9481 0.9497 0.9513 0.9529 0.9545 0.9562 0.9578 0.9594 $Er_3$ 0.9470 0.9486 0.9502 0.9519 0.9535 0.9551 0.9567 0.9584 0.9600 $D$ 0.9473 0.9489 0.9505 0.9521 0.9538 0.9554 0.9570 0.9586 0.9603 $U(a, b)$ 0.9473 0.9489 0.9505 0.9521 0.9537 0.9553 0.9569 0.9586 0.9602 $GE_4$ 0.9471 0.9487 0.9503 0.9519 0.9535 0.9551 0.9568 0.9584 0.9600 $HE_2$ 0.9463 0.9479 0.9495 0.9511 0.9527 0.9544 0.9560 0.9576 0.9592
 Indices Distribution $q$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Er_3$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $D$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $U(a, b)$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $GE_4$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $HE_2$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Av$ $M$ 0.9465 0.9481 0.9497 0.9513 0.9529 0.9545 0.9562 0.9578 0.9594 $Er_3$ 0.9470 0.9486 0.9502 0.9519 0.9535 0.9551 0.9567 0.9584 0.9600 $D$ 0.9473 0.9489 0.9505 0.9521 0.9538 0.9554 0.9570 0.9586 0.9603 $U(a, b)$ 0.9473 0.9489 0.9505 0.9521 0.9537 0.9553 0.9569 0.9586 0.9602 $GE_4$ 0.9471 0.9487 0.9503 0.9519 0.9535 0.9551 0.9568 0.9584 0.9600 $HE_2$ 0.9463 0.9479 0.9495 0.9511 0.9527 0.9544 0.9560 0.9576 0.9592
State probabilities and availability of the system
 Distribution $M$ $Er_3$ $D$ $U(a, b)$ $GE_4$ $HE_2$ Parameter(s) $\mu=25$ $\mu=25$ $\mu=25$ $a=0.02$ $\mu_1=60$ $\alpha_1=0.2$ $b=0.06$ $\mu_2=100$ $\alpha_2=0.8$ $\mu_3=120$ $\mu_1=15$ $\mu_4=200$ $\mu_2=30$ $P_{21}$ 0.9123644 0.9123430 0.9123320 0.9123347 0.9123417 0.9123711 $P_{20}$ 0.0437935 0.0443790 0.0446796 0.0446037 0.0444134 0.0436102 $P_{10}$ 0.0371515 0.0365876 0.0362980 0.0363711 0.0365544 0.0373280 $Q_{11}$ 0.0054742 0.0054741 0.0054740 0.0054740 0.0054741 0.0054742 $R_O$ 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 $R_S$ 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 $Av$ 0.9561579 0.9567219 0.9570115 0.9569385 0.9567551 0.9559813
 Distribution $M$ $Er_3$ $D$ $U(a, b)$ $GE_4$ $HE_2$ Parameter(s) $\mu=25$ $\mu=25$ $\mu=25$ $a=0.02$ $\mu_1=60$ $\alpha_1=0.2$ $b=0.06$ $\mu_2=100$ $\alpha_2=0.8$ $\mu_3=120$ $\mu_1=15$ $\mu_4=200$ $\mu_2=30$ $P_{21}$ 0.9123644 0.9123430 0.9123320 0.9123347 0.9123417 0.9123711 $P_{20}$ 0.0437935 0.0443790 0.0446796 0.0446037 0.0444134 0.0436102 $P_{10}$ 0.0371515 0.0365876 0.0362980 0.0363711 0.0365544 0.0373280 $Q_{11}$ 0.0054742 0.0054741 0.0054740 0.0054740 0.0054741 0.0054742 $R_O$ 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 0.0007299 $R_S$ 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 0.0004866 $Av$ 0.9561579 0.9567219 0.9570115 0.9569385 0.9567551 0.9559813
Performance indices corresponding to Fig. 2
 Indices Distribution $\mu$ 24 26 28 30 32 34 36 38 40 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572
 Indices Distribution $\mu$ 24 26 28 30 32 34 36 38 40 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572
Performance indices corresponding to Fig. 3
 Indices Distribution $\lambda$ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 $P_{2, 1}$ $M$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Er_3$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $D$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $U(a, b)$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $GE_4$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $HE_2$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Av$ $M$ 0.9905 0.9860 0.9816 0.9773 0.9730 0.9687 0.9645 0.9603 0.9562 $Er_3$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9567 $D$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9692 0.9651 0.9610 0.9570 $U(a, b)$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9691 0.9650 0.9610 0.9569 $GE_4$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9568 $HE_2$ 0.9905 0.9860 0.9816 0.9772 0.9729 0.9686 0.9644 0.9602 0.9560
 Indices Distribution $\lambda$ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 $P_{2, 1}$ $M$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Er_3$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $D$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $U(a, b)$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $GE_4$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9350 0.9274 0.9198 0.9123 $HE_2$ 0.9749 0.9667 0.9586 0.9507 0.9428 0.9351 0.9274 0.9198 0.9124 $Av$ $M$ 0.9905 0.9860 0.9816 0.9773 0.9730 0.9687 0.9645 0.9603 0.9562 $Er_3$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9567 $D$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9692 0.9651 0.9610 0.9570 $U(a, b)$ 0.9905 0.9861 0.9818 0.9775 0.9733 0.9691 0.9650 0.9610 0.9569 $GE_4$ 0.9905 0.9861 0.9818 0.9775 0.9732 0.9690 0.9649 0.9608 0.9568 $HE_2$ 0.9905 0.9860 0.9816 0.9772 0.9729 0.9686 0.9644 0.9602 0.9560
Performance indices corresponding to Fig. 4
 Indices Distribution $\nu$ 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 $P_{2, 1}$ $M$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9114 0.9105 $Er_3$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $D$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $U(a, b)$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $GE_4$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $HE_2$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9115 0.9105 $Av$ $M$ 0.9565 0.9564 0.9564 0.9563 0.9563 0.9562 0.9562 0.9561 0.9561 $Er_3$ 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 0.9566 $D$ 0.9572 0.9572 0.9572 0.9571 0.9571 0.9570 0.9570 0.9570 0.9569 $U(a, b)$ 0.9572 0.9571 0.9571 0.9571 0.9570 0.9570 0.9569 0.9569 0.9569 $GE_4$ 0.9570 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 $HE_2$ 0.9563 0.9563 0.9562 0.9562 0.9561 0.9560 0.9560 0.9559 0.9559
 Indices Distribution $\nu$ 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 $P_{2, 1}$ $M$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9114 0.9105 $Er_3$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $D$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $U(a, b)$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $GE_4$ 0.9179 0.9170 0.9160 0.9151 0.9142 0.9133 0.9123 0.9114 0.9105 $HE_2$ 0.9179 0.9170 0.9161 0.9151 0.9142 0.9133 0.9124 0.9115 0.9105 $Av$ $M$ 0.9565 0.9564 0.9564 0.9563 0.9563 0.9562 0.9562 0.9561 0.9561 $Er_3$ 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 0.9566 $D$ 0.9572 0.9572 0.9572 0.9571 0.9571 0.9570 0.9570 0.9570 0.9569 $U(a, b)$ 0.9572 0.9571 0.9571 0.9571 0.9570 0.9570 0.9569 0.9569 0.9569 $GE_4$ 0.9570 0.9570 0.9569 0.9569 0.9568 0.9568 0.9568 0.9567 0.9567 $HE_2$ 0.9563 0.9563 0.9562 0.9562 0.9561 0.9560 0.9560 0.9559 0.9559
Performance indices corresponding to Fig. 5
 Indices Distribution $\beta$ 50 55 60 65 70 75 80 85 90 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $U(a, b)$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $GE_4$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $HE_2$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9126 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572 $U(a, b)$ 0.9564 0.9565 0.9566 0.9568 0.9569 0.9569 0.9570 0.9571 0.9571 $GE_4$ 0.9562 0.9563 0.9565 0.9566 0.9567 0.9568 0.9568 0.9569 0.9569 $HE_2$ 0.9554 0.9556 0.9557 0.9558 0.9559 0.9560 0.9561 0.9561 0.9562
 Indices Distribution $\beta$ 50 55 60 65 70 75 80 85 90 $P_{2, 1}$ $M$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9125 $Er_3$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $D$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $U(a, b)$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $GE_4$ 0.9118 0.9119 0.9121 0.9122 0.9123 0.9123 0.9124 0.9125 0.9125 $HE_2$ 0.9118 0.9120 0.9121 0.9122 0.9123 0.9124 0.9124 0.9125 0.9126 $Av$ $M$ 0.9556 0.9557 0.9559 0.9560 0.9561 0.9562 0.9562 0.9563 0.9564 $Er_3$ 0.9561 0.9563 0.9564 0.9565 0.9566 0.9567 0.9568 0.9569 0.9569 $D$ 0.9564 0.9566 0.9567 0.9568 0.9569 0.9570 0.9571 0.9571 0.9572 $U(a, b)$ 0.9564 0.9565 0.9566 0.9568 0.9569 0.9569 0.9570 0.9571 0.9571 $GE_4$ 0.9562 0.9563 0.9565 0.9566 0.9567 0.9568 0.9568 0.9569 0.9569 $HE_2$ 0.9554 0.9556 0.9557 0.9558 0.9559 0.9560 0.9561 0.9561 0.9562
Performance indices corresponding to Fig. 6
 Indices Distribution $\sigma$ 30 35 40 45 50 55 60 65 70 $P_{2, 1}$ $M$ 0.9090 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Er_3$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $D$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $U(a, b)$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $GE_4$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $HE_2$ 0.9091 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Av$ $M$ 0.9527 0.9539 0.9549 0.9556 0.9562 0.9566 0.9570 0.9574 0.9577 $Er_3$ 0.9532 0.9545 0.9554 0.9561 0.9567 0.9572 0.9576 0.9579 0.9582 $D$ 0.9535 0.9548 0.9557 0.9564 0.9570 0.9575 0.9579 0.9582 0.9585 $U(a, b)$ 0.9535 0.9547 0.9556 0.9564 0.9569 0.9574 0.9578 0.9581 0.9584 $GE_4$ 0.9533 0.9545 0.9554 0.9562 0.9568 0.9572 0.9576 0.9580 0.9583 $HE_2$ 0.9525 0.9537 0.9547 0.9554 0.9560 0.9565 0.9569 0.9572 0.9575
 Indices Distribution $\sigma$ 30 35 40 45 50 55 60 65 70 $P_{2, 1}$ $M$ 0.9090 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Er_3$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $D$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $U(a, b)$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $GE_4$ 0.9090 0.9102 0.9111 0.9118 0.9123 0.9128 0.9132 0.9135 0.9138 $HE_2$ 0.9091 0.9102 0.9111 0.9118 0.9124 0.9128 0.9132 0.9135 0.9138 $Av$ $M$ 0.9527 0.9539 0.9549 0.9556 0.9562 0.9566 0.9570 0.9574 0.9577 $Er_3$ 0.9532 0.9545 0.9554 0.9561 0.9567 0.9572 0.9576 0.9579 0.9582 $D$ 0.9535 0.9548 0.9557 0.9564 0.9570 0.9575 0.9579 0.9582 0.9585 $U(a, b)$ 0.9535 0.9547 0.9556 0.9564 0.9569 0.9574 0.9578 0.9581 0.9584 $GE_4$ 0.9533 0.9545 0.9554 0.9562 0.9568 0.9572 0.9576 0.9580 0.9583 $HE_2$ 0.9525 0.9537 0.9547 0.9554 0.9560 0.9565 0.9569 0.9572 0.9575
Performance indices corresponding to Fig. 7
 Indices Distribution $p$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Er_3$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $D$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $U(a, b)$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $GE_4$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $HE_2$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Av$ $M$ 0.9646 0.9635 0.9625 0.9614 0.9604 0.9593 0.9583 0.9572 0.9562 $Er_3$ 0.9652 0.9641 0.9630 0.9620 0.9609 0.9599 0.9588 0.9578 0.9567 $D$ 0.9655 0.9644 0.9633 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 $U(a, b)$ 0.9654 0.9643 0.9633 0.9622 0.9611 0.9601 0.9590 0.9580 0.9569 $GE_4$ 0.9652 0.9641 0.9631 0.9620 0.9610 0.9599 0.9589 0.9578 0.9568 $HE_2$ 0.9644 0.9634 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 0.9560
 Indices Distribution $p$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Er_3$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $D$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $U(a, b)$ 0.9204 0.9194 0.9184 0.9174 0.9163 0.9153 0.9143 0.9133 0.9123 $GE_4$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9153 0.9143 0.9133 0.9123 $HE_2$ 0.9204 0.9194 0.9184 0.9174 0.9164 0.9154 0.9144 0.9134 0.9124 $Av$ $M$ 0.9646 0.9635 0.9625 0.9614 0.9604 0.9593 0.9583 0.9572 0.9562 $Er_3$ 0.9652 0.9641 0.9630 0.9620 0.9609 0.9599 0.9588 0.9578 0.9567 $D$ 0.9655 0.9644 0.9633 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 $U(a, b)$ 0.9654 0.9643 0.9633 0.9622 0.9611 0.9601 0.9590 0.9580 0.9569 $GE_4$ 0.9652 0.9641 0.9631 0.9620 0.9610 0.9599 0.9589 0.9578 0.9568 $HE_2$ 0.9644 0.9634 0.9623 0.9612 0.9602 0.9591 0.9581 0.9570 0.9560
Performance indices corresponding to Fig. 8
 Indices Distribution $c$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9113 0.9118 0.9124 0.9129 $Er_3$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $D$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $U(a, b)$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $GE_4$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $HE_2$ 0.9085 0.9091 0.9096 0.9102 0.9107 0.9113 0.9118 0.9124 0.9129 $Av$ $M$ 0.9521 0.9527 0.9533 0.9538 0.9544 0.9550 0.9556 0.9562 0.9567 $Er_3$ 0.9527 0.9532 0.9538 0.9544 0.9550 0.9556 0.9561 0.9567 0.9573 $D$ 0.9530 0.9535 0.9541 0.9547 0.9553 0.9558 0.9564 0.9570 0.9576 $U(a, b)$ 0.9529 0.9535 0.9540 0.9546 0.9552 0.9558 0.9564 0.9569 0.9575 $GE_4$ 0.9527 0.9533 0.9539 0.9544 0.9550 0.9556 0.9562 0.9568 0.9573 $HE_2$ 0.9519 0.9525 0.9531 0.9537 0.9542 0.9548 0.9554 0.9560 0.9566
 Indices Distribution $c$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9113 0.9118 0.9124 0.9129 $Er_3$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $D$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $U(a, b)$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $GE_4$ 0.9085 0.9090 0.9096 0.9101 0.9107 0.9112 0.9118 0.9123 0.9129 $HE_2$ 0.9085 0.9091 0.9096 0.9102 0.9107 0.9113 0.9118 0.9124 0.9129 $Av$ $M$ 0.9521 0.9527 0.9533 0.9538 0.9544 0.9550 0.9556 0.9562 0.9567 $Er_3$ 0.9527 0.9532 0.9538 0.9544 0.9550 0.9556 0.9561 0.9567 0.9573 $D$ 0.9530 0.9535 0.9541 0.9547 0.9553 0.9558 0.9564 0.9570 0.9576 $U(a, b)$ 0.9529 0.9535 0.9540 0.9546 0.9552 0.9558 0.9564 0.9569 0.9575 $GE_4$ 0.9527 0.9533 0.9539 0.9544 0.9550 0.9556 0.9562 0.9568 0.9573 $HE_2$ 0.9519 0.9525 0.9531 0.9537 0.9542 0.9548 0.9554 0.9560 0.9566
Performance indices corresponding to Fig. 9
 Indices Distribution $q$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Er_3$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $D$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $U(a, b)$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $GE_4$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $HE_2$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Av$ $M$ 0.9465 0.9481 0.9497 0.9513 0.9529 0.9545 0.9562 0.9578 0.9594 $Er_3$ 0.9470 0.9486 0.9502 0.9519 0.9535 0.9551 0.9567 0.9584 0.9600 $D$ 0.9473 0.9489 0.9505 0.9521 0.9538 0.9554 0.9570 0.9586 0.9603 $U(a, b)$ 0.9473 0.9489 0.9505 0.9521 0.9537 0.9553 0.9569 0.9586 0.9602 $GE_4$ 0.9471 0.9487 0.9503 0.9519 0.9535 0.9551 0.9568 0.9584 0.9600 $HE_2$ 0.9463 0.9479 0.9495 0.9511 0.9527 0.9544 0.9560 0.9576 0.9592
 Indices Distribution $q$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $P_{2, 1}$ $M$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Er_3$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $D$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $U(a, b)$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $GE_4$ 0.9031 0.9046 0.9062 0.9077 0.9092 0.9108 0.9123 0.9139 0.9155 $HE_2$ 0.9031 0.9047 0.9062 0.9077 0.9093 0.9108 0.9124 0.9139 0.9155 $Av$ $M$ 0.9465 0.9481 0.9497 0.9513 0.9529 0.9545 0.9562 0.9578 0.9594 $Er_3$ 0.9470 0.9486 0.9502 0.9519 0.9535 0.9551 0.9567 0.9584 0.9600 $D$ 0.9473 0.9489 0.9505 0.9521 0.9538 0.9554 0.9570 0.9586 0.9603 $U(a, b)$ 0.9473 0.9489 0.9505 0.9521 0.9537 0.9553 0.9569 0.9586 0.9602 $GE_4$ 0.9471 0.9487 0.9503 0.9519 0.9535 0.9551 0.9568 0.9584 0.9600 $HE_2$ 0.9463 0.9479 0.9495 0.9511 0.9527 0.9544 0.9560 0.9576 0.9592
 [1] Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048 [2] Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 [3] Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107 [4] Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 [5] Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 [6] Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341 [7] Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103 [8] Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468 [9] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [10] Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

2019 Impact Factor: 1.366