
-
Previous Article
A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project
- JIMO Home
- This Issue
-
Next Article
Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations
Time-consistent multiperiod mean semivariance portfolio selection with the real constraints
1. | School of Economics and Management, South China Normal University, Guangzhou 510006, China |
2. | College of Humanities and Social sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China |
3. | Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China |
In this paper, a new multiperiod mean semivariance portfolio selection with the transaction costs, borrowing constraints, threshold constraints and cardinality constraints is proposed. In the model, the return and risk of assets are characterized by mean value and semivariance, respectively. Because the semivariance operator is not separable, the optimal solution of the model is not time-consistent. The time-consistent strategy for this model can be obtained by using game approach. The time-consistent strategy, which is a mix integer dynamic optimization problem with path dependence, is approximately turned into a dynamic programming problem by approximate dynamic programming method. A novel discrete approximate iteration method is designed to obtain the optimal time-consistent strategy, and is proved linearly convergent. Finally, the comparison analysis of trade-off parameters is given to illustrate the idea of our model and the effectiveness of the designed algorithm.
References:
[1] |
K. P. Anagnostopoulos and G. Mamanis,
The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms, Expert Systems with Appl., 38 (2011), 14208-14217.
doi: 10.1016/j.eswa.2011.04.233. |
[2] |
S. Basak and G. Chabakauri,
Dynamic mean-variance asset allocation, Rev. Financial Studies, 23 (2010), 2970-3016.
doi: 10.1093/rfs/hhq028. |
[3] |
A. Bensoussan, K. C. Wong, S. C. P. Yam and S. P. Yung,
Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM J. Financial Math., 5 (2014), 153-190.
doi: 10.1137/130914139. |
[4] |
D. Bertsimas and R. Shioda,
Algorithms for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43 (2009), 1-22.
doi: 10.1007/s10589-007-9126-9. |
[5] |
D. Bienstock,
Computational study of a family of mixed-integer quadratic programming problems, Math. Programming, 74 (1996), 121-140.
doi: 10.1007/BF02592208. |
[6] |
T. Björk, M. H. A. Davis and C. Landén,
Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), 371-399.
doi: 10.1007/s00186-010-0301-x. |
[7] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[8] |
F. Cesarone, A. Scozzari and F. Tardella,
A new method for mean-variance portfolio optimization with cardinality constraints, Ann. Oper. Res., 205 (2013), 213-234.
doi: 10.1007/s10479-012-1165-7. |
[9] |
Z. Chen, G. Li and Y. Zhao,
Time-consistent investment policies in Markovian markets: A case of mean-variance analysis, J. Econom. Dynam. Control, 40 (2014), 293-316.
doi: 10.1016/j.jedc.2014.01.011. |
[10] |
F. Cong and C. W. Oosterlee,
Multi-period mean-variance portfolio optimization based on Monte-Carlo simulation, J. Econom. Dynam. Control, 64 (2016), 23-38.
doi: 10.1016/j.jedc.2016.01.001. |
[11] |
X. Cui, D. Li and X. Li,
Mean variance policy for discrete time cone-constrained markets: time consistency in efficiency and the minimum-variance signed supermartingale measure, Math. Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093. |
[12] |
X. T. Cui, X. J. Zheng, S. S. Zhu and X. L. Sun,
Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, J. Global Optim., 56 (2013), 1409-1423.
doi: 10.1007/s10898-012-9842-2. |
[13] |
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu,
Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Math. Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x. |
[14] |
X. Y. Cui, X. Li and D. Li,
Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Trans. Automat. Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875. |
[15] |
C. Czichowsky,
Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance Stoch., 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9. |
[16] |
G. F. Deng, W. T. Lin and C. C. Lo,
Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Expert Systems with Appl., 39 (2012), 4558-4566.
doi: 10.1016/j.eswa.2011.09.129. |
[17] |
A. Fernández and S. Gómez,
Portfolio selection using neural networks, Comput. Oper. Res., 34 (2005), 1177-1191.
doi: 10.1016/j.cor.2005.06.017. |
[18] |
J. J. Gao, D. Li, X. Y. Cui and S. Y. Wang,
Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach, Automatica J., 54 (2015), 91-99.
doi: 10.1016/j.automatica.2015.01.040. |
[19] |
B. Heidergott, G. J. Olsder and J. V. Woude, Max Plus at Work. Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications, Princeton Series in Applied Mathematics, 48, Princeton University Press, Princeton, NJ, 2006.
doi: 10.1515/9781400865239.![]() ![]() |
[20] |
H. A. Le Thi and M. Moeini,
Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm, J. Optim. Theory Appl., 161 (2014), 199-224.
doi: 10.1007/s10957-012-0197-0. |
[21] |
H. A. Le Thi, M. Moeini and T. P. Dinh,
Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA, Comput. Manag. Sci., 6 (2009), 459-475.
doi: 10.1007/s10287-009-0098-3. |
[22] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Math. Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[23] |
D. Li, X. Sun and J. Wang,
Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Math. Finance, 16 (2006), 83-101.
doi: 10.1111/j.1467-9965.2006.00262.x. |
[24] |
A. Lioui,
Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences, J. Econom. Dynam. Control, 37 (2013), 1066-1096.
doi: 10.1016/j.jedc.2013.01.007. |
[25] |
J. Liu and Z. Chen,
Time consistent multi-period robust risk measures and portfolio selection models with regime-switching, European J. Oper. Res., 268 (2018), 373-385.
doi: 10.1016/j.ejor.2018.01.009. |
[26] |
F. M. Longin,
From value at risk to stress testing: The extreme value approach, J. Banking Finance, 24 (2000), 1097-1130.
doi: 10.1016/S0378-4266(99)00077-1. |
[27] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Monograph, 16, John Wiley & Sons, Inc., New York, 1959. |
[28] |
H. M. Markowitz, Portfolio selection analysis, J. Finance, 7 (1952), 77-91. Google Scholar |
[29] |
W. Murray and H. Shek,
A local relaxation method for the cardinality constrained portfolio optimization problem, Comput. Optim. Appl., 53 (2012), 681-709.
doi: 10.1007/s10589-012-9471-1. |
[30] |
M. Ç. Pınar,
Robust scenario optimization based on downside-risk measure for multi-period portfolio selection, OR Spectrum, 29 (2007), 295-309.
doi: 10.1007/s00291-005-0023-2. |
[31] |
B. Rudloff, A. Street and D. M. Valladō,
Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences, European J. Oper. Res., 234 (2014), 743-750.
doi: 10.1016/j.ejor.2013.11.037. |
[32] |
R. Ruiz-Torrubiano and A. Suarez,
Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains, IEEE Comput. Intell. Magazine, 5 (2010), 92-107.
doi: 10.1109/MCI.2010.936308. |
[33] |
D. X. Shaw, S. Liu and L. Kopman,
Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optim. Methods Softw., 23 (2008), 411-420.
doi: 10.1080/10556780701722542. |
[34] |
M. Simkowitz and W. Beedles,
Diversification in a three moment world, J. Financial Quantitative Anal., 13 (1978), 927-941.
doi: 10.2307/2330635. |
[35] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[36] |
X. L. Sun, X. J. Zheng and D. Li,
Recent advances in mathematical programming with semi-continuous variables and cardinality constraint, J. Oper. Res. Soc. of China, 1 (2013), 55-77.
doi: 10.1007/s40305-013-0004-0. |
[37] |
E. Vercher and J. D. Bermúdez,
A possibilistic mean-downside risk-skewness model for efficient portfolio selection, IEEE Transactions on Fuzzy Systems, 3 (2013), 585-595.
doi: 10.1109/TFUZZ.2012.2227487. |
[38] |
J. Wang and P. A. Forsyth,
Continuous time mean variance asset allocation: A time-consistent strategy, European J. Oper. Res., 209 (2011), 184-201.
doi: 10.1016/j.ejor.2010.09.038. |
[39] |
J. Wei, K. C. Wong, S. C. P. Yam and S. P. Yung,
Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance Math. Econom., 53 (2013), 281-291.
doi: 10.1016/j.insmatheco.2013.05.008. |
[40] |
M. Woodside-Oriakhi, C. Lucas and J. E. Beasley,
Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213 (2011), 538-550.
doi: 10.1016/j.ejor.2011.03.030. |
[41] |
H. Wu and H. Chen,
Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching, Economic Modell., 46 (2015), 79-90.
doi: 10.1016/j.econmod.2014.12.024. |
[42] |
H. Wu and Y. Zeng,
Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance Math. Econom., 64 (2015), 396-408.
doi: 10.1016/j.insmatheco.2015.07.007. |
[43] |
W. Yan and S.R. Li,
A class of multi-period semi-variance portfolio selection with a four-factor futures price model, J. Appl. Math. Comput., 29 (2009), 19-34.
doi: 10.1007/s12190-008-0086-8. |
[44] |
P. Zhang and W.-G. Zhang,
Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255 (2014), 74-91.
doi: 10.1016/j.fss.2014.07.018. |
[45] |
Z. Zhou, H. Xiao, J. Yin, X. Zeng and L. Lin,
Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows, Insurance Math. Econom., 68 (2016), 187-202.
doi: 10.1016/j.insmatheco.2016.03.002. |
[46] |
S. S. Zhu, D. Li and S. Y. Wang,
Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Trans. Automat. Control, 49 (2004), 447-457.
doi: 10.1109/TAC.2004.824474. |
show all references
References:
[1] |
K. P. Anagnostopoulos and G. Mamanis,
The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms, Expert Systems with Appl., 38 (2011), 14208-14217.
doi: 10.1016/j.eswa.2011.04.233. |
[2] |
S. Basak and G. Chabakauri,
Dynamic mean-variance asset allocation, Rev. Financial Studies, 23 (2010), 2970-3016.
doi: 10.1093/rfs/hhq028. |
[3] |
A. Bensoussan, K. C. Wong, S. C. P. Yam and S. P. Yung,
Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM J. Financial Math., 5 (2014), 153-190.
doi: 10.1137/130914139. |
[4] |
D. Bertsimas and R. Shioda,
Algorithms for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43 (2009), 1-22.
doi: 10.1007/s10589-007-9126-9. |
[5] |
D. Bienstock,
Computational study of a family of mixed-integer quadratic programming problems, Math. Programming, 74 (1996), 121-140.
doi: 10.1007/BF02592208. |
[6] |
T. Björk, M. H. A. Davis and C. Landén,
Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), 371-399.
doi: 10.1007/s00186-010-0301-x. |
[7] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[8] |
F. Cesarone, A. Scozzari and F. Tardella,
A new method for mean-variance portfolio optimization with cardinality constraints, Ann. Oper. Res., 205 (2013), 213-234.
doi: 10.1007/s10479-012-1165-7. |
[9] |
Z. Chen, G. Li and Y. Zhao,
Time-consistent investment policies in Markovian markets: A case of mean-variance analysis, J. Econom. Dynam. Control, 40 (2014), 293-316.
doi: 10.1016/j.jedc.2014.01.011. |
[10] |
F. Cong and C. W. Oosterlee,
Multi-period mean-variance portfolio optimization based on Monte-Carlo simulation, J. Econom. Dynam. Control, 64 (2016), 23-38.
doi: 10.1016/j.jedc.2016.01.001. |
[11] |
X. Cui, D. Li and X. Li,
Mean variance policy for discrete time cone-constrained markets: time consistency in efficiency and the minimum-variance signed supermartingale measure, Math. Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093. |
[12] |
X. T. Cui, X. J. Zheng, S. S. Zhu and X. L. Sun,
Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, J. Global Optim., 56 (2013), 1409-1423.
doi: 10.1007/s10898-012-9842-2. |
[13] |
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu,
Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Math. Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x. |
[14] |
X. Y. Cui, X. Li and D. Li,
Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Trans. Automat. Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875. |
[15] |
C. Czichowsky,
Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance Stoch., 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9. |
[16] |
G. F. Deng, W. T. Lin and C. C. Lo,
Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Expert Systems with Appl., 39 (2012), 4558-4566.
doi: 10.1016/j.eswa.2011.09.129. |
[17] |
A. Fernández and S. Gómez,
Portfolio selection using neural networks, Comput. Oper. Res., 34 (2005), 1177-1191.
doi: 10.1016/j.cor.2005.06.017. |
[18] |
J. J. Gao, D. Li, X. Y. Cui and S. Y. Wang,
Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach, Automatica J., 54 (2015), 91-99.
doi: 10.1016/j.automatica.2015.01.040. |
[19] |
B. Heidergott, G. J. Olsder and J. V. Woude, Max Plus at Work. Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications, Princeton Series in Applied Mathematics, 48, Princeton University Press, Princeton, NJ, 2006.
doi: 10.1515/9781400865239.![]() ![]() |
[20] |
H. A. Le Thi and M. Moeini,
Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm, J. Optim. Theory Appl., 161 (2014), 199-224.
doi: 10.1007/s10957-012-0197-0. |
[21] |
H. A. Le Thi, M. Moeini and T. P. Dinh,
Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA, Comput. Manag. Sci., 6 (2009), 459-475.
doi: 10.1007/s10287-009-0098-3. |
[22] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Math. Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[23] |
D. Li, X. Sun and J. Wang,
Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Math. Finance, 16 (2006), 83-101.
doi: 10.1111/j.1467-9965.2006.00262.x. |
[24] |
A. Lioui,
Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences, J. Econom. Dynam. Control, 37 (2013), 1066-1096.
doi: 10.1016/j.jedc.2013.01.007. |
[25] |
J. Liu and Z. Chen,
Time consistent multi-period robust risk measures and portfolio selection models with regime-switching, European J. Oper. Res., 268 (2018), 373-385.
doi: 10.1016/j.ejor.2018.01.009. |
[26] |
F. M. Longin,
From value at risk to stress testing: The extreme value approach, J. Banking Finance, 24 (2000), 1097-1130.
doi: 10.1016/S0378-4266(99)00077-1. |
[27] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Monograph, 16, John Wiley & Sons, Inc., New York, 1959. |
[28] |
H. M. Markowitz, Portfolio selection analysis, J. Finance, 7 (1952), 77-91. Google Scholar |
[29] |
W. Murray and H. Shek,
A local relaxation method for the cardinality constrained portfolio optimization problem, Comput. Optim. Appl., 53 (2012), 681-709.
doi: 10.1007/s10589-012-9471-1. |
[30] |
M. Ç. Pınar,
Robust scenario optimization based on downside-risk measure for multi-period portfolio selection, OR Spectrum, 29 (2007), 295-309.
doi: 10.1007/s00291-005-0023-2. |
[31] |
B. Rudloff, A. Street and D. M. Valladō,
Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences, European J. Oper. Res., 234 (2014), 743-750.
doi: 10.1016/j.ejor.2013.11.037. |
[32] |
R. Ruiz-Torrubiano and A. Suarez,
Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains, IEEE Comput. Intell. Magazine, 5 (2010), 92-107.
doi: 10.1109/MCI.2010.936308. |
[33] |
D. X. Shaw, S. Liu and L. Kopman,
Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optim. Methods Softw., 23 (2008), 411-420.
doi: 10.1080/10556780701722542. |
[34] |
M. Simkowitz and W. Beedles,
Diversification in a three moment world, J. Financial Quantitative Anal., 13 (1978), 927-941.
doi: 10.2307/2330635. |
[35] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[36] |
X. L. Sun, X. J. Zheng and D. Li,
Recent advances in mathematical programming with semi-continuous variables and cardinality constraint, J. Oper. Res. Soc. of China, 1 (2013), 55-77.
doi: 10.1007/s40305-013-0004-0. |
[37] |
E. Vercher and J. D. Bermúdez,
A possibilistic mean-downside risk-skewness model for efficient portfolio selection, IEEE Transactions on Fuzzy Systems, 3 (2013), 585-595.
doi: 10.1109/TFUZZ.2012.2227487. |
[38] |
J. Wang and P. A. Forsyth,
Continuous time mean variance asset allocation: A time-consistent strategy, European J. Oper. Res., 209 (2011), 184-201.
doi: 10.1016/j.ejor.2010.09.038. |
[39] |
J. Wei, K. C. Wong, S. C. P. Yam and S. P. Yung,
Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance Math. Econom., 53 (2013), 281-291.
doi: 10.1016/j.insmatheco.2013.05.008. |
[40] |
M. Woodside-Oriakhi, C. Lucas and J. E. Beasley,
Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213 (2011), 538-550.
doi: 10.1016/j.ejor.2011.03.030. |
[41] |
H. Wu and H. Chen,
Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching, Economic Modell., 46 (2015), 79-90.
doi: 10.1016/j.econmod.2014.12.024. |
[42] |
H. Wu and Y. Zeng,
Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance Math. Econom., 64 (2015), 396-408.
doi: 10.1016/j.insmatheco.2015.07.007. |
[43] |
W. Yan and S.R. Li,
A class of multi-period semi-variance portfolio selection with a four-factor futures price model, J. Appl. Math. Comput., 29 (2009), 19-34.
doi: 10.1007/s12190-008-0086-8. |
[44] |
P. Zhang and W.-G. Zhang,
Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255 (2014), 74-91.
doi: 10.1016/j.fss.2014.07.018. |
[45] |
Z. Zhou, H. Xiao, J. Yin, X. Zeng and L. Lin,
Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows, Insurance Math. Econom., 68 (2016), 187-202.
doi: 10.1016/j.insmatheco.2016.03.002. |
[46] |
S. S. Zhu, D. Li and S. Y. Wang,
Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Trans. Automat. Control, 49 (2004), 447-457.
doi: 10.1109/TAC.2004.824474. |

![]() |
The optimal investment proportions | ||||||
1 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1044290 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
100000.0 | 200000.0 | 0 | |||||
2 | Asset6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | Asset 11 | 1091060 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset 12 | Asset 28 | other risk asset | |||||
144290.0 | 200000.0 | 0 | |||||
3 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1140219 |
191060.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 | |||||
4 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1188760 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 | |||||
5 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1235266 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 |
![]() |
The optimal investment proportions | ||||||
1 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1044290 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
100000.0 | 200000.0 | 0 | |||||
2 | Asset6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | Asset 11 | 1091060 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset 12 | Asset 28 | other risk asset | |||||
144290.0 | 200000.0 | 0 | |||||
3 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1140219 |
191060.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 | |||||
4 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1188760 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 | |||||
5 | Asset3 | Asset 6 | Asset 7 | Asset 8 | Asset 9 | Asset 10 | 1235266 |
200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | 200000.0 | ||
Asset11 | Asset28 | other risk asset | |||||
200000.0 | 200000.0 | 0 |
0 | 0.000001 | 0.000002 | 0.000003 | 0.000004 | 0.000005 | 0.000006 | 0.000007 | 0.000008 | |
1203337 | 1199885 | 1192648 | 1187153 | 1181143 | 1171130 | 1155254 | 1146196 | 1128999 | |
1237168 | 1233682 | 1224935 | 1215756 | 1201734 | 1185194 | 1169038 | 1150985 | 1137892 | |
0.000009 | 0.00001 | 0.00002 | 0.00003 | 0.00004 | 0.00005 | 0.00006 | 0.00007 | 0.00008 | |
1119367 | 1110519 | 1065707 | 1048836 | 1040399 | 1035338 | 1031963 | 1029552 | 1027745 | |
1127173 | 1122523 | 1067509 | 1050035 | 1041300 | 1036057 | 1032563 | 1030067 | 1028194 | |
0.00009 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | |
1026339 | 1025214 | 1020151 | 1018466 | 1017621 | 1017139 | 1016767 | 1016526 | 1016347 | |
1027030 | 1025575 | 1020331 | 1018585 | 1017711 | 1017187 | 1016837 | 1016588 | 1016400 | |
0.0009 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | |
1016208 | 1016095 | 1015593 | 1015425 | 1015343 | 1015291 | 1015257 | 1015234 | 1015216 | |
1016256 | 1016139 | 1015614 | 1015441 | 1015352 | 1015300 | 1015266 | 1015241 | 1015221 | |
0.009 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | |
1015201 | 1015191 | 1015141 | 1015123 | 1015115 | 1015110 | 1015106 | 1015106 | 1015106 | |
1015207 | 1015195 | 1015142 | 1015126 | 1015117 | 1015111 | 1015106 | 1015106 | 1015106 |
0 | 0.000001 | 0.000002 | 0.000003 | 0.000004 | 0.000005 | 0.000006 | 0.000007 | 0.000008 | |
1203337 | 1199885 | 1192648 | 1187153 | 1181143 | 1171130 | 1155254 | 1146196 | 1128999 | |
1237168 | 1233682 | 1224935 | 1215756 | 1201734 | 1185194 | 1169038 | 1150985 | 1137892 | |
0.000009 | 0.00001 | 0.00002 | 0.00003 | 0.00004 | 0.00005 | 0.00006 | 0.00007 | 0.00008 | |
1119367 | 1110519 | 1065707 | 1048836 | 1040399 | 1035338 | 1031963 | 1029552 | 1027745 | |
1127173 | 1122523 | 1067509 | 1050035 | 1041300 | 1036057 | 1032563 | 1030067 | 1028194 | |
0.00009 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | |
1026339 | 1025214 | 1020151 | 1018466 | 1017621 | 1017139 | 1016767 | 1016526 | 1016347 | |
1027030 | 1025575 | 1020331 | 1018585 | 1017711 | 1017187 | 1016837 | 1016588 | 1016400 | |
0.0009 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | |
1016208 | 1016095 | 1015593 | 1015425 | 1015343 | 1015291 | 1015257 | 1015234 | 1015216 | |
1016256 | 1016139 | 1015614 | 1015441 | 1015352 | 1015300 | 1015266 | 1015241 | 1015221 | |
0.009 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | |
1015201 | 1015191 | 1015141 | 1015123 | 1015115 | 1015110 | 1015106 | 1015106 | 1015106 | |
1015207 | 1015195 | 1015142 | 1015126 | 1015117 | 1015111 | 1015106 | 1015106 | 1015106 |
0 | 0.0000001 | 0.0000002 | 0.0000003 | 0.0000004 | |
1237168 | 1237167 | 1237031 | 1236828 | 1235819 | |
1240294 | 240294 | 1240154 | 1240154 | 1239692 | |
0.0000005 | 0.0000006 | 0.0000007 | 0.0000008 | 0.0000009 | |
1235560 | 1234737 | 1234664 | 1234642 | 1233682 | |
1239692 | 1237130 | 1237130 | 1237130 | 1237130 |
0 | 0.0000001 | 0.0000002 | 0.0000003 | 0.0000004 | |
1237168 | 1237167 | 1237031 | 1236828 | 1235819 | |
1240294 | 240294 | 1240154 | 1240154 | 1239692 | |
0.0000005 | 0.0000006 | 0.0000007 | 0.0000008 | 0.0000009 | |
1235560 | 1234737 | 1234664 | 1234642 | 1233682 | |
1239692 | 1237130 | 1237130 | 1237130 | 1237130 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
1015090 | 1065669 | 1102726 | 1136562 | 1160553 | 1181499 | 1202122 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 | |
1221479 | 1240294 | 1258686 | 1275590 | 1284427 | 1284833 | 1284833 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
1015090 | 1065669 | 1102726 | 1136562 | 1160553 | 1181499 | 1202122 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 | |
1221479 | 1240294 | 1258686 | 1275590 | 1284427 | 1284833 | 1284833 |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[3] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[4] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[5] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[6] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[7] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[8] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[9] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[10] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[11] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[12] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[15] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[16] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[17] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[18] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[19] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[20] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]