doi: 10.3934/jimo.2020048

The viability of switched nonlinear systems with piecewise smooth Lyapunov functions

1. 

School of Management, University of Shanghai for Science and Technology Shanghai, 200093, China

2. 

School of Science, Inner Mongolia University of Science and Technology Baotou, 014010, China

* Corresponding author: Yan Gao

Received  May 2019 Revised  November 2019 Published  March 2020

In this paper, we focus on the viability and attraction for switched nonlinear systems with nonsmooth Lyapunov functions. We determine the viable set and region of attraction for switched systems in which Lyapunov functions are piecewise smooth. The switching law is constructed by using the directional derivatives of a piecewise smooth Lyapunov function along the trajectories of the subsystems. Sufficient conditions are derived to guarantee the viability and attraction of switched nonlinear systems on the level set of a piecewise smooth Lyapunov function. We further extend the method to switched systems involving possible sliding motions. The approach in the paper provides a unified framework for studying viability and attraction with a systematic consideration of sliding motions. Finally, considering two certain classes of piecewise smooth functions, the related conditions of the viability and attraction for the level set are developed.

Citation: Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020048
References:
[1]

J. P. Aubin, Viability Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-0-8176-4910-4.  Google Scholar

[2]

J. P. Aubin, Dynamic Economic Theory: A Viability Approach, Studies in Economic Theory, 5. Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60756-1.  Google Scholar

[3]

J. P. AubinD. Pujal and P. Saint-Pierre, Dynamic management of portfolios with transaction costs under tychastic uncertainty, Numerical Methods in Finance, GERAD 25th Anniv. Ser., Springer, New York, 9 (2005), 59-89.  doi: 10.1007/0-387-25118-9_3.  Google Scholar

[4]

A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM: Control, Optimization and Calculus of Variations, 4 (1999), 361-376.  doi: 10.1051/cocv:1999113.  Google Scholar

[5]

A. Bacciotti and L. Mazzi, From Artstein-Sontag theorem to the min-projection strategy, Transactions of the Institute of Measurement and Control, 32 (2010), 571-581.  doi: 10.1177/0142331208095427.  Google Scholar

[6]

F. Blanchini, Set invariance in control, Automatica J. IFAC, 35 (1999), 1747-1767.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[7]

M. S. Branicky, Multiple Lyapunov function and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic and Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[8]

Z. Chen and Y. Gao, Determining the viable unbounded polyhedron under linear control systems, Asian Journal of Control, 16 (2014), 1561-1567.  doi: 10.1002/asjc.849.  Google Scholar

[9]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. doi: 10.1007/b97650.  Google Scholar

[10]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic and Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[11]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science and Complexity, 24 (2011), 825-834.  doi: 10.1007/s11424-011-9056-6.  Google Scholar

[12]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015.   Google Scholar

[13]

Z. H. GongC. Y. Liu and Y. J. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.  Google Scholar

[14]

J. F. HeW. XuZ. G. Feng and X. S. Yang, On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.  doi: 10.3934/jimo.2018072.  Google Scholar

[15]

T. S. HuL. Q. Ma and Z. L. Lin, Stabilization of switched systems via composite quadratic functions, IEEE Transactions on Automatic and Control, 53 (2008), 2571-2585.  doi: 10.1109/TAC.2008.2006933.  Google Scholar

[16]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[17]

L. LiuY. Gao and F. C. Wang, Road safety analysis for high-speed vehicle in complex environments based on the viability kernel, IET Intelligent Transport Systems, 12 (2018), 495-503.  doi: 10.1049/iet-its.2017.0168.  Google Scholar

[18]

Y. Y. Lu and W. Zhang, A piecewise smooth control-Lyapunov function framework for switching stabilization, Automatica J. IFAC, 76 (2017), 258-265.  doi: 10.1016/j.automatica.2016.09.029.  Google Scholar

[19]

J. F. LvY. Gao and N. Zhao, Viability criteria for a switched system on bounded polyhedron, Asian Journal of Control, 20 (2018), 2380-2387.  doi: 10.1002/asjc.1719.  Google Scholar

[20]

E. Moulay and R. Bourdais, Stabilization of nonlinear switched systems using control Lyapunov functions, Nonlinear Analysis Hybrid Systems, 1 (2007), 482-490.  doi: 10.1016/j.nahs.2005.12.001.  Google Scholar

[21]

A. Oubraham and G. Zaccour, A survey of applications of viability theory to the sustainable exploitation of renewable resources, Ecological Economics, 145 (2018), 346-367.  doi: 10.1016/j.ecolecon.2017.11.008.  Google Scholar

[22]

D. Panagou and K. J. Kyriakopoulos, Viability control for a class of underactuated systems, Automatica J. IFAC, 49 (2013), 17-29.  doi: 10.1016/j.automatica.2012.09.002.  Google Scholar

[23]

A. RapaportJ. P. Terreaux and L. Doyen, Viability analysis for the sustainable management of renewable resources, Mathematical and Computer Modelling, 43 (2006), 466-484.  doi: 10.1016/j.mcm.2005.12.014.  Google Scholar

[24]

C. RougéJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics and application to lake eutrophication, Ecological Indicators, 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.  Google Scholar

[25]

R. SabatierF. Joly and B. Hubert, Assessing both ecological and engineering resilience of a steppe agroecosystem using the viability theory, Agricultural Systems, 157 (2017), 146-156.  doi: 10.1016/j.agsy.2017.07.009.  Google Scholar

[26]

A. I. Subbotin, Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-0847-1.  Google Scholar

[27]

W. Tan and A. Packard, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of squares programming, IEEE Transactions on Automatic and Control, 53 (2008), 565-571.  doi: 10.1109/TAC.2007.914221.  Google Scholar

[28]

V. I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic and Control, 22 (1977), 212-222.  doi: 10.1109/TAC.1977.1101446.  Google Scholar

[29]

M. C. Valentino, F. A. Faria, V. A. Oliveira and L. F. C. Alberto, Ultimate boundedness sufficient conditions for nonlinear systems using TS fuzzy modelling, Fuzzy Sets and Systems, 361 (2018), 88–100, Available from: http://hdl.handle.net/11449/170819. doi: 10.1016/j.fss.2018.03.010.  Google Scholar

[30]

M. C. ValentinoV. A. OliveiraL. F. C. Alberto and D. A. Sant'Anna, An extension of the invariance principle for dwell-time switched nonlinear systems, Systems and Control Letters, 61 (2012), 580-586.  doi: 10.1016/j.sysconle.2012.02.007.  Google Scholar

[31]

M. Wang and J. Feng, Stabilization of switched nonlinear systems using multiple Lyapunov function method, American Control Conference, St. Louis-Missouri, (2009), 1778–1782. Google Scholar

[32]

X. ZhangY. Gao and Z.-Q. Xia, Stabilization of switched systems with polytopic uncertainties via composite quadratic functions, Nonlinear Analysis Hybrid Systems, 11 (2014), 71-83.  doi: 10.1016/j.nahs.2013.06.002.  Google Scholar

[33]

L. X. ZhangS. L. Zhuang and R. D. Braatz, Switched model predictive control of switched linear systems: Feasibility, stability and robustness, Automatica J. IFAC, 67 (2016), 8-21.  doi: 10.1016/j.automatica.2016.01.010.  Google Scholar

show all references

References:
[1]

J. P. Aubin, Viability Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-0-8176-4910-4.  Google Scholar

[2]

J. P. Aubin, Dynamic Economic Theory: A Viability Approach, Studies in Economic Theory, 5. Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60756-1.  Google Scholar

[3]

J. P. AubinD. Pujal and P. Saint-Pierre, Dynamic management of portfolios with transaction costs under tychastic uncertainty, Numerical Methods in Finance, GERAD 25th Anniv. Ser., Springer, New York, 9 (2005), 59-89.  doi: 10.1007/0-387-25118-9_3.  Google Scholar

[4]

A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM: Control, Optimization and Calculus of Variations, 4 (1999), 361-376.  doi: 10.1051/cocv:1999113.  Google Scholar

[5]

A. Bacciotti and L. Mazzi, From Artstein-Sontag theorem to the min-projection strategy, Transactions of the Institute of Measurement and Control, 32 (2010), 571-581.  doi: 10.1177/0142331208095427.  Google Scholar

[6]

F. Blanchini, Set invariance in control, Automatica J. IFAC, 35 (1999), 1747-1767.  doi: 10.1016/S0005-1098(99)00113-2.  Google Scholar

[7]

M. S. Branicky, Multiple Lyapunov function and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic and Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[8]

Z. Chen and Y. Gao, Determining the viable unbounded polyhedron under linear control systems, Asian Journal of Control, 16 (2014), 1561-1567.  doi: 10.1002/asjc.849.  Google Scholar

[9]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. doi: 10.1007/b97650.  Google Scholar

[10]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic and Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.  Google Scholar

[11]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science and Complexity, 24 (2011), 825-834.  doi: 10.1007/s11424-011-9056-6.  Google Scholar

[12]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015.   Google Scholar

[13]

Z. H. GongC. Y. Liu and Y. J. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.  Google Scholar

[14]

J. F. HeW. XuZ. G. Feng and X. S. Yang, On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.  doi: 10.3934/jimo.2018072.  Google Scholar

[15]

T. S. HuL. Q. Ma and Z. L. Lin, Stabilization of switched systems via composite quadratic functions, IEEE Transactions on Automatic and Control, 53 (2008), 2571-2585.  doi: 10.1109/TAC.2008.2006933.  Google Scholar

[16]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[17]

L. LiuY. Gao and F. C. Wang, Road safety analysis for high-speed vehicle in complex environments based on the viability kernel, IET Intelligent Transport Systems, 12 (2018), 495-503.  doi: 10.1049/iet-its.2017.0168.  Google Scholar

[18]

Y. Y. Lu and W. Zhang, A piecewise smooth control-Lyapunov function framework for switching stabilization, Automatica J. IFAC, 76 (2017), 258-265.  doi: 10.1016/j.automatica.2016.09.029.  Google Scholar

[19]

J. F. LvY. Gao and N. Zhao, Viability criteria for a switched system on bounded polyhedron, Asian Journal of Control, 20 (2018), 2380-2387.  doi: 10.1002/asjc.1719.  Google Scholar

[20]

E. Moulay and R. Bourdais, Stabilization of nonlinear switched systems using control Lyapunov functions, Nonlinear Analysis Hybrid Systems, 1 (2007), 482-490.  doi: 10.1016/j.nahs.2005.12.001.  Google Scholar

[21]

A. Oubraham and G. Zaccour, A survey of applications of viability theory to the sustainable exploitation of renewable resources, Ecological Economics, 145 (2018), 346-367.  doi: 10.1016/j.ecolecon.2017.11.008.  Google Scholar

[22]

D. Panagou and K. J. Kyriakopoulos, Viability control for a class of underactuated systems, Automatica J. IFAC, 49 (2013), 17-29.  doi: 10.1016/j.automatica.2012.09.002.  Google Scholar

[23]

A. RapaportJ. P. Terreaux and L. Doyen, Viability analysis for the sustainable management of renewable resources, Mathematical and Computer Modelling, 43 (2006), 466-484.  doi: 10.1016/j.mcm.2005.12.014.  Google Scholar

[24]

C. RougéJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics and application to lake eutrophication, Ecological Indicators, 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.  Google Scholar

[25]

R. SabatierF. Joly and B. Hubert, Assessing both ecological and engineering resilience of a steppe agroecosystem using the viability theory, Agricultural Systems, 157 (2017), 146-156.  doi: 10.1016/j.agsy.2017.07.009.  Google Scholar

[26]

A. I. Subbotin, Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-0847-1.  Google Scholar

[27]

W. Tan and A. Packard, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of squares programming, IEEE Transactions on Automatic and Control, 53 (2008), 565-571.  doi: 10.1109/TAC.2007.914221.  Google Scholar

[28]

V. I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic and Control, 22 (1977), 212-222.  doi: 10.1109/TAC.1977.1101446.  Google Scholar

[29]

M. C. Valentino, F. A. Faria, V. A. Oliveira and L. F. C. Alberto, Ultimate boundedness sufficient conditions for nonlinear systems using TS fuzzy modelling, Fuzzy Sets and Systems, 361 (2018), 88–100, Available from: http://hdl.handle.net/11449/170819. doi: 10.1016/j.fss.2018.03.010.  Google Scholar

[30]

M. C. ValentinoV. A. OliveiraL. F. C. Alberto and D. A. Sant'Anna, An extension of the invariance principle for dwell-time switched nonlinear systems, Systems and Control Letters, 61 (2012), 580-586.  doi: 10.1016/j.sysconle.2012.02.007.  Google Scholar

[31]

M. Wang and J. Feng, Stabilization of switched nonlinear systems using multiple Lyapunov function method, American Control Conference, St. Louis-Missouri, (2009), 1778–1782. Google Scholar

[32]

X. ZhangY. Gao and Z.-Q. Xia, Stabilization of switched systems with polytopic uncertainties via composite quadratic functions, Nonlinear Analysis Hybrid Systems, 11 (2014), 71-83.  doi: 10.1016/j.nahs.2013.06.002.  Google Scholar

[33]

L. X. ZhangS. L. Zhuang and R. D. Braatz, Switched model predictive control of switched linear systems: Feasibility, stability and robustness, Automatica J. IFAC, 67 (2016), 8-21.  doi: 10.1016/j.automatica.2016.01.010.  Google Scholar

Figure 1.  Trajectories of switched systems excluding sliding motions
Figure 2.  Trajectories of switched systems including sliding motions
Figure 3.  The phase portraits of subsystems 1 and 2
Figure 4.  State responses under the switching law
[1]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[2]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[7]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[10]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[16]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (58)
  • HTML views (385)
  • Cited by (0)

Other articles
by authors

[Back to Top]