• Previous Article
    Time-consistent multiperiod mean semivariance portfolio selection with the real constraints
  • JIMO Home
  • This Issue
  • Next Article
    On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs
doi: 10.3934/jimo.2020049

A stochastic model and social optimization of a blockchain system based on a general limited batch service queue

1. 

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

* Corresponding author: Shunfu Jin

Received  May 2019 Revised  October 2019 Published  March 2020

Blockchain is well known as a database technology supporting digital currencies such as Bitcoin, Ether and Ripple. For the purpose of maximizing the overall revenue of the blockchain system, we propose a pricing policy to impose on transactions. Regarding the mining process as a vacation, and the block-verification process as a service, we establish a type of non-exhaustive queueing model with a limited batch service and a possible zero-transaction service. By selecting the beginning instant of a block-verification process as a Markov point and using the method of a generating function, we obtain the stationary probability distribution for the number of transactions in the system at the Markov points and analyze the elapsed time for the mining cycle. Based on the model analysis results, we derive the average latency of transactions and demonstrate how the average latency of transactions changes in relation to the arrival rate of transactions. With a reward-cost structure, we construct an individual benefit function and a social benefit function. By improving the Grasshopper Optimization Algorithm (GOA), we search for the Nash equilibrium and the socially optimal arrival rates of transactions. Numerical results show that the Nash equilibrium arrival rate of transactions is always higher than the socially optimal arrival rate of transactions for a given mining parameter and a specific block capacity. For this, we propose a pricing policy that forces the transactions to accept the socially optimal arrival rate and maximize the overall revenue of the blockchain system, including all transactions and miners.

Citation: Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020049
References:
[1]

M. Aguiar and A. Lauve, Lagrange's theorem for Hopf monoids in species, Canadian Journal of Mathematics, 65 (2013), 241-265.  doi: 10.4153/CJM-2011-098-9.  Google Scholar

[2]

A. Antonopoulos and O. Media, Mastering Bitcoin: Unlocking Digital Crypto-Currencies, O'Reilly Media, 2014. Google Scholar

[3]

R. Howell and E. Schrohe, Unpacking Rouché's Theorem,, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 27 (2017), 801-813.  doi: 10.1080/10511970.2016.1235646.  Google Scholar

[4]

S. Kasahara and J. Kawahara, Effect on transaction-confirmation process, J. Ind. Manag. Optim., 15 (2019), 365-386.   Google Scholar

[5]

Y. Kawase and S. Kasahara, Transaction-confirmation time for bitcoin: A queueing analytical approach to blockchain mechanism, 12th International Conference of Queueing Theory and Network Applications, LNCS, (2017), 75–88. doi: 10.1007/978-3-319-68520-5_5.  Google Scholar

[6]

Q. Li, J. Ma and Y. Chang, Blockchain queueing theory, (2018). Available from: https://arXiv.org/abs/1808.01795. Google Scholar

[7]

R. MemonJ. Li and J. Ahmed, Simulation model for blockchain systems using queuing theory, Electronics, 8 (2019), 234-252.  doi: 10.3390/electronics8020234.  Google Scholar

[8]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from: https://www.coindesk.com/bitcoin-peer-to-peer-electronic-cash-system. Google Scholar

[9]

O. Novo, Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5 (2018), 1184-1195.  doi: 10.1109/JIOT.2018.2812239.  Google Scholar

[10]

W. QianQ. ShaoY. ZhuC. Jin and A. Zhou, Research problems and methods in blockchain and trusted data management, Journal of Software, 29 (2018), 150-159.   Google Scholar

[11]

S. Ross, Stochastic Processes, Second edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1996.  Google Scholar

[12]

S. SaremiS. Mirjalili and A. Lewis, Grasshopper optimisation algorithm: Theory and application,, Advances in Engineering Software, 105 (2017), 30-47.  doi: 10.1016/j.advengsoft.2017.01.004.  Google Scholar

[13]

M. TurkanovićM. HolblK. KosicM. Hericko and A. Kamisalic, Eductx: A blockchain-based higher education credit platform, IEEE Access, 6 (2018), 5112-5127.   Google Scholar

[14]

M. Vlasiou, A non-increasing Lindley-type equation, Queueing Systems, 56 (2007), 41-52.  doi: 10.1007/s11134-007-9029-6.  Google Scholar

[15]

L. WangX. ShenJ. LiJ. Shao and Y. Yang, Cryptographic primitives in blockchains, Journal of Network and Computer Applications, 127 (2019), 43-58.  doi: 10.1016/j.jnca.2018.11.003.  Google Scholar

[16]

R. Wolff and Y. Yao, Little's law when the average waiting time is infinite, Queueing Systems, 76 (2014), 267-281.  doi: 10.1007/s11134-013-9364-8.  Google Scholar

[17]

H. ZhaoP. BaiY. Peng and R. Xu, Efficient key management scheme for health blockchain, CAAI Transactions on Intelligence Technology, 3 (2018), 114-118.  doi: 10.1049/trit.2018.0014.  Google Scholar

[18]

W. Zhao, S. Jin and W. Yue, Analysis of the average confirmation time of transactions in a blockchain system, 14th International Conference of Queueing Theory and Network Applications, LNCS, (2019), 379–388. doi: 10.1007/978-3-030-27181-7_23.  Google Scholar

show all references

References:
[1]

M. Aguiar and A. Lauve, Lagrange's theorem for Hopf monoids in species, Canadian Journal of Mathematics, 65 (2013), 241-265.  doi: 10.4153/CJM-2011-098-9.  Google Scholar

[2]

A. Antonopoulos and O. Media, Mastering Bitcoin: Unlocking Digital Crypto-Currencies, O'Reilly Media, 2014. Google Scholar

[3]

R. Howell and E. Schrohe, Unpacking Rouché's Theorem,, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 27 (2017), 801-813.  doi: 10.1080/10511970.2016.1235646.  Google Scholar

[4]

S. Kasahara and J. Kawahara, Effect on transaction-confirmation process, J. Ind. Manag. Optim., 15 (2019), 365-386.   Google Scholar

[5]

Y. Kawase and S. Kasahara, Transaction-confirmation time for bitcoin: A queueing analytical approach to blockchain mechanism, 12th International Conference of Queueing Theory and Network Applications, LNCS, (2017), 75–88. doi: 10.1007/978-3-319-68520-5_5.  Google Scholar

[6]

Q. Li, J. Ma and Y. Chang, Blockchain queueing theory, (2018). Available from: https://arXiv.org/abs/1808.01795. Google Scholar

[7]

R. MemonJ. Li and J. Ahmed, Simulation model for blockchain systems using queuing theory, Electronics, 8 (2019), 234-252.  doi: 10.3390/electronics8020234.  Google Scholar

[8]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from: https://www.coindesk.com/bitcoin-peer-to-peer-electronic-cash-system. Google Scholar

[9]

O. Novo, Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5 (2018), 1184-1195.  doi: 10.1109/JIOT.2018.2812239.  Google Scholar

[10]

W. QianQ. ShaoY. ZhuC. Jin and A. Zhou, Research problems and methods in blockchain and trusted data management, Journal of Software, 29 (2018), 150-159.   Google Scholar

[11]

S. Ross, Stochastic Processes, Second edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1996.  Google Scholar

[12]

S. SaremiS. Mirjalili and A. Lewis, Grasshopper optimisation algorithm: Theory and application,, Advances in Engineering Software, 105 (2017), 30-47.  doi: 10.1016/j.advengsoft.2017.01.004.  Google Scholar

[13]

M. TurkanovićM. HolblK. KosicM. Hericko and A. Kamisalic, Eductx: A blockchain-based higher education credit platform, IEEE Access, 6 (2018), 5112-5127.   Google Scholar

[14]

M. Vlasiou, A non-increasing Lindley-type equation, Queueing Systems, 56 (2007), 41-52.  doi: 10.1007/s11134-007-9029-6.  Google Scholar

[15]

L. WangX. ShenJ. LiJ. Shao and Y. Yang, Cryptographic primitives in blockchains, Journal of Network and Computer Applications, 127 (2019), 43-58.  doi: 10.1016/j.jnca.2018.11.003.  Google Scholar

[16]

R. Wolff and Y. Yao, Little's law when the average waiting time is infinite, Queueing Systems, 76 (2014), 267-281.  doi: 10.1007/s11134-013-9364-8.  Google Scholar

[17]

H. ZhaoP. BaiY. Peng and R. Xu, Efficient key management scheme for health blockchain, CAAI Transactions on Intelligence Technology, 3 (2018), 114-118.  doi: 10.1049/trit.2018.0014.  Google Scholar

[18]

W. Zhao, S. Jin and W. Yue, Analysis of the average confirmation time of transactions in a blockchain system, 14th International Conference of Queueing Theory and Network Applications, LNCS, (2019), 379–388. doi: 10.1007/978-3-030-27181-7_23.  Google Scholar

Figure 1.  The working flow of a mining cycle
Figure 2.  Operation of the queueing model with general limited batch service
Figure 3.  Change trend of the individual benefit $ U_{I}(\lambda) $ of a transaction
Figure 4.  Change trend of social benefit $ U_{S}(\lambda) $ of transactions
Figure 5.  The working flow of the enhanced GOA
Figure 6.  Nash equilibrium and socially optimal arrival rates of transactions
Table 1.  Numerical results for the remittance fee
Mining parameter $ (\theta) $ Block capacity $ (b) $ Socially optimal arrival rate $ (\lambda^{*}) $ Maximum social benefit $ (U_{S}({\lambda^{*}})) $ Remittance fee $ (f) $
0.5 40 11.0493 101.0826 9.0397
0.5 80 22.0986 202.2892 9.0996
1.0 40 20.9083 225.1180 10.6713
1.0 80 41.8166 450.5689 10.7271
1.5 40 28.0302 318.0631 11.2554
1.5 80 56.2193 636.5389 11.2767
Mining parameter $ (\theta) $ Block capacity $ (b) $ Socially optimal arrival rate $ (\lambda^{*}) $ Maximum social benefit $ (U_{S}({\lambda^{*}})) $ Remittance fee $ (f) $
0.5 40 11.0493 101.0826 9.0397
0.5 80 22.0986 202.2892 9.0996
1.0 40 20.9083 225.1180 10.6713
1.0 80 41.8166 450.5689 10.7271
1.5 40 28.0302 318.0631 11.2554
1.5 80 56.2193 636.5389 11.2767
[1]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[2]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1385-1398. doi: 10.3934/dcdss.2019095

[3]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019060

[4]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019122

[5]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[6]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[7]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

[8]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[9]

Cristian Barbarosie, Anca-Maria Toader, Sérgio Lopes. A gradient-type algorithm for constrained optimization with application to microstructure optimization. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1729-1755. doi: 10.3934/dcdsb.2019249

[10]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[11]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[12]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[13]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[14]

Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103

[15]

Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics & Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009

[16]

Larisa Beilina, Michel Cristofol, Kati Niinimäki. Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Problems & Imaging, 2015, 9 (1) : 1-25. doi: 10.3934/ipi.2015.9.1

[17]

Jianxin Zhou. Optimization with some uncontrollable variables: a min-equilibrium approach. Journal of Industrial & Management Optimization, 2007, 3 (1) : 129-138. doi: 10.3934/jimo.2007.3.129

[18]

Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial & Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005

[19]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[20]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2020066

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]