
-
Previous Article
Second-Order characterizations for set-valued equilibrium problems with variable ordering structures
- JIMO Home
- This Issue
-
Next Article
Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints
A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem
1. | Industrial Engineering and Systems Management, Egypt-Japan University of Science and Technology, New Borg Elarab City, Alexandria 21934, Egypt |
2. | Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt |
3. | Industrial Engineering and Economics, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan |
Nurse Rostering is the activity of assigning nurses to daily shifts in order to satisfy the cover requirements, taking into account the operational requirements and nurses' preferences. The problem is usually modeled as sets of hard and soft constraints with an objective function to minimize violations of soft constraints. The nurse rostering problem is known to be NP-hard. Many metaheuristics were used to tackle this problem. One of the frequently used heuristics is the Variable Neighbourhood Search (VNS). The VNS is usually used as a standalone method or in integration with another exact or heuristic method. In this paper, a new hybrid VNS and Dynamic Programming based heuristic approach is proposed to handle the nurse rostering problem. In the proposed approach, two perturbation mechanisms are adopted simultaneously. The proposed approach is tested on two different benchmark data sets. A comparison with state-of-the-art methods from literature revealed the competitive performance of the proposed approach.
References:
[1] |
M. Abdelgalil, Z. Yahia and A. B. Eltawil, A proposed new dynamic programming formulation for the nurse rostering problem, in Proceedings of 47th International Conference on Computers and Industrial Engineering, 2017, 1–8. Google Scholar |
[2] |
H. Akita and A. Ikegami,
A network representation of feasible solution space for a subproblem of nurse scheduling, Proceedings of the Institute of Statistical Mathematics, 61 (2013), 79-95.
|
[3] |
G. Alpan, R. Larbi and B. Penz,
A bounded dynamic programming approach to schedule operations in a cross docking platform, Computers and Industrial Engineering, 60 (2011), 385-396.
doi: 10.1016/j.cie.2010.08.012. |
[4] |
M. A. Awadallah, M. A. Al-Betar, A. T. Khader, A. L. Bolaji and M. Alkoffash,
Hybridization of harmony search with hill climbing for highly constrained nurse rostering problem, Neural Computing and Applications, 28 (2017), 463-482.
doi: 10.1007/s00521-015-2076-8. |
[5] |
J. Bautista and J. Pereira,
A dynamic programming based heuristic for the assembly line balancing problem, European Journal of Operational Research, 194 (2009), 787-794.
doi: 10.1016/j.ejor.2008.01.016. |
[6] |
F. Bellanti, G. Carello, F. Della Croce and R. Tadei,
A greedy-based neighborhood search approach to a nurse rostering problem, European Journal of Operational Research, 153 (2004), 28-40.
doi: 10.1016/S0377-2217(03)00096-1. |
[7] |
S. Bouajaja and N. Dridi,
A survey on human resource allocation problem and its applications, Operational Research, 17 (2017), 339-369.
doi: 10.1007/s12351-016-0247-8. |
[8] |
J. D. Bunton, A. T. Ernst and M. Krishnamoorthy,
An integer programming based ant colony optimisation method for nurse rostering, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, 11 (2017), 407-414.
doi: 10.15439/2017F237. |
[9] |
E. Burke, P. De Causmaecker, S. Petrovic and G. V. Berghe, Variable neighborhood search for nurse rostering problems, in Metaheuristics: Computer Decision-Making, Springer, Boston, MA, 2003,153–172.
doi: 10.1007/978-1-4757-4137-7_7. |
[10] |
E. K. Burke, T. Curtois, G. Post, R. Qu and B. Veltman,
A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem, European Journal of Operational Research, 188 (2008), 330-341.
doi: 10.1016/j.ejor.2007.04.030. |
[11] |
E. K. Burke and T. Curtois,
New approaches to nurse rostering benchmark instances, European Journal of Operational Research, 237 (2014), 71-81.
doi: 10.1016/j.ejor.2014.01.039. |
[12] |
E. K. Burke, J. Li and R. Qu,
A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems, European Journal of Operational Research, 203 (2010), 484-493.
doi: 10.1016/j.ejor.2009.07.036. |
[13] |
E. K. Burke, T. Curtois, L. F. van Draat, J. Van Ommeren and G. Post,
Progress control in iterated local search for nurse rostering, Journal of the Operational Research Society, 62 (2011), 360-367.
doi: 10.1057/jors.2010.86. |
[14] |
S. Ceschia, N. Dang, P. De Causmaecker, S. Haspeslagh and A. Schaerf, Second international nurse rostering competition, Annals of Operations Research, 274 (2019), 171–186, arXiv: 1501.04177.
doi: 10.1007/s10479-018-2816-0. |
[15] |
T. Curtois and R. Qu, Technical Report: Computational Results on New Staff Scheduling Benchmark Instances, ASAP Research Group, School of Computer Science, University of Nottingham, UK, 2014. Google Scholar |
[16] |
F. Della Croce and F. Salassa,
A variable neighborhood search based matheuristic for nurse rostering problems, Annals of Operations Research, 218 (2014), 185-199.
doi: 10.1007/s10479-012-1235-x. |
[17] |
J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester and L. De Boeck,
Personnel scheduling: A literature review, European Journal of Operational Research, 226 (2013), 367-385.
doi: 10.1016/j.ejor.2012.11.029. |
[18] |
S. C. Gao and C. W. Lin, Particle swarm optimization based nurses' shift scheduling, in Proceedings of the Institute of Industrial Engineers Asian Conference 2013, 2013,775–782.
doi: 10.1007/978-981-4451-98-7_93. |
[19] |
R. A. M. Gomes, T. A. M. Toffolo and H. G. Santos,
Variable neighborhood search accelerated column generation for the nurse rostering problem, Electronic Notes in Discrete Mathematics, 58 (2017), 31-38.
doi: 10.1016/j.endm.2017.03.005. |
[20] |
M. Hadwan, M. Ayob, N. R. Sabar and R. Qu,
A harmony search algorithm for nurse rostering problems, Information Sciences, 233 (2013), 126-140.
doi: 10.1016/j.ins.2012.12.025. |
[21] |
S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stølevik,
The first international nurse rostering competition 2010, Annals of Operations Research, 218 (2014), 221-236.
doi: 10.1007/s10479-012-1062-0. |
[22] |
F. Knust and L. Xie,
Simulated annealing approach to nurse rostering benchmark and real-world instances, Annals of Operations Research, 272 (2019), 187-216.
doi: 10.1007/s10479-017-2546-8. |
[23] |
Z. Lü and J.-K. Hao, Adaptive neighborhood search for nurse rostering, European Journal of Operational Research, 218 (2012), 865-876. Google Scholar |
[24] |
R. M'Hallah and A. Alkhabbaz,
Scheduling of nurses: A case study of a Kuwaiti health care unit, Operations Research for Health Care, 2 (2013), 1-19.
doi: 10.1016/j.orhc.2013.03.003. |
[25] |
N. Musliu and F. Winter,
A hybrid approach for the sudoku problem: Using constraint programming in iterated local search, IEEE Intelligent Systems, 32 (2017), 52-62.
doi: 10.1109/MIS.2017.29. |
[26] |
F. Mischek and N. Musliu,
Integer programming model extensions for a multi-stage nurse rostering problem, Annals of Operations Research, 275 (2019), 123-143.
doi: 10.1007/s10479-017-2623-z. |
[27] |
E. Rahimian, K. Akartunali and J. Levine,
A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems, European Journal of Operational Research, 258 (2017), 411-423.
doi: 10.1016/j.ejor.2016.09.030. |
[28] |
E. Rahimian, K. Akartunali and J. Levine,
A hybrid integer and constraint programming approach to solve nurse rostering problems, Computers and Operations Research, 82 (2017), 83-94.
doi: 10.1016/j.cor.2017.01.016. |
[29] |
H. G. Santos, T. A. M. Toffolo, R. A. M. Gomes and S. Ribas,
Integer programming techniques for the nurse rostering problem, Annals of Operations Research, 239 (2016), 225-251.
doi: 10.1007/s10479-014-1594-6. |
[30] |
A. M. Shahidin, M. S. M. Said, N. H. M. Said and N. I. A. Sazali, Developing optimal nurses work schedule using integer programming, AIP Conference Proceedings, 1870 (2017), 040031.
doi: 10.1063/1.4995863. |
[31] |
P. Smet, P. Brucker, P. D. Causmaecker and G. V. Berghe,
Polynomially solvable personnel rostering problems, European Journal of Operational Research, 249 (2016), 67-75.
doi: 10.1016/j.ejor.2015.08.025. |
[32] |
I. P. Solos, I. X. Tassopoulos and G. N. Beligiannis,
A generic two-phase stochastic variable neighborhood approach for effectively solving the nurse rostering problem, Algorithms, 6 (2013), 278-308.
doi: 10.3390/a6020278. |
[33] |
I. X. Tassopoulos, I. P. Solos and G. N. Beligiannis,
A two-phase adaptive variable neighborhood approach for nurse rostering, Computers and Operations Research, 60 (2015), 150-169.
doi: 10.1016/j.cor.2015.02.009. |
[34] |
T.-H. Wu, J.-Y. Yeh and Y.-M. Lee,
A particle swarm optimization approach with refinement procedure for nurse rostering problem, Computers and Operations Research, 54 (2015), 52-63.
doi: 10.1016/j.cor.2014.08.016. |
[35] |
Z. Zheng and X. Gong, Chemical reaction optimization for nurse rostering problem,, in Frontier and Future Development of Information Technology in Medicine and Education, Springer, Dordrecht, 2014, 3275–3279.
doi: 10.1007/978-94-007-7618-0_422. |
[36] |
Z. Zheng, X. Liu and X. Gong,
A simple randomized variable neighbourhood search for nurse rostering, Computers and Industrial Engineering, 110 (2017), 165-174.
doi: 10.1016/j.cie.2017.05.027. |
[37] |
, Instances & Results – Nurse Rostering Competition, (Accessed: April 25, 2019), https://www.kuleuven-kulak.be/nrpcompetition/instances-results. Google Scholar |
show all references
References:
[1] |
M. Abdelgalil, Z. Yahia and A. B. Eltawil, A proposed new dynamic programming formulation for the nurse rostering problem, in Proceedings of 47th International Conference on Computers and Industrial Engineering, 2017, 1–8. Google Scholar |
[2] |
H. Akita and A. Ikegami,
A network representation of feasible solution space for a subproblem of nurse scheduling, Proceedings of the Institute of Statistical Mathematics, 61 (2013), 79-95.
|
[3] |
G. Alpan, R. Larbi and B. Penz,
A bounded dynamic programming approach to schedule operations in a cross docking platform, Computers and Industrial Engineering, 60 (2011), 385-396.
doi: 10.1016/j.cie.2010.08.012. |
[4] |
M. A. Awadallah, M. A. Al-Betar, A. T. Khader, A. L. Bolaji and M. Alkoffash,
Hybridization of harmony search with hill climbing for highly constrained nurse rostering problem, Neural Computing and Applications, 28 (2017), 463-482.
doi: 10.1007/s00521-015-2076-8. |
[5] |
J. Bautista and J. Pereira,
A dynamic programming based heuristic for the assembly line balancing problem, European Journal of Operational Research, 194 (2009), 787-794.
doi: 10.1016/j.ejor.2008.01.016. |
[6] |
F. Bellanti, G. Carello, F. Della Croce and R. Tadei,
A greedy-based neighborhood search approach to a nurse rostering problem, European Journal of Operational Research, 153 (2004), 28-40.
doi: 10.1016/S0377-2217(03)00096-1. |
[7] |
S. Bouajaja and N. Dridi,
A survey on human resource allocation problem and its applications, Operational Research, 17 (2017), 339-369.
doi: 10.1007/s12351-016-0247-8. |
[8] |
J. D. Bunton, A. T. Ernst and M. Krishnamoorthy,
An integer programming based ant colony optimisation method for nurse rostering, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, 11 (2017), 407-414.
doi: 10.15439/2017F237. |
[9] |
E. Burke, P. De Causmaecker, S. Petrovic and G. V. Berghe, Variable neighborhood search for nurse rostering problems, in Metaheuristics: Computer Decision-Making, Springer, Boston, MA, 2003,153–172.
doi: 10.1007/978-1-4757-4137-7_7. |
[10] |
E. K. Burke, T. Curtois, G. Post, R. Qu and B. Veltman,
A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem, European Journal of Operational Research, 188 (2008), 330-341.
doi: 10.1016/j.ejor.2007.04.030. |
[11] |
E. K. Burke and T. Curtois,
New approaches to nurse rostering benchmark instances, European Journal of Operational Research, 237 (2014), 71-81.
doi: 10.1016/j.ejor.2014.01.039. |
[12] |
E. K. Burke, J. Li and R. Qu,
A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems, European Journal of Operational Research, 203 (2010), 484-493.
doi: 10.1016/j.ejor.2009.07.036. |
[13] |
E. K. Burke, T. Curtois, L. F. van Draat, J. Van Ommeren and G. Post,
Progress control in iterated local search for nurse rostering, Journal of the Operational Research Society, 62 (2011), 360-367.
doi: 10.1057/jors.2010.86. |
[14] |
S. Ceschia, N. Dang, P. De Causmaecker, S. Haspeslagh and A. Schaerf, Second international nurse rostering competition, Annals of Operations Research, 274 (2019), 171–186, arXiv: 1501.04177.
doi: 10.1007/s10479-018-2816-0. |
[15] |
T. Curtois and R. Qu, Technical Report: Computational Results on New Staff Scheduling Benchmark Instances, ASAP Research Group, School of Computer Science, University of Nottingham, UK, 2014. Google Scholar |
[16] |
F. Della Croce and F. Salassa,
A variable neighborhood search based matheuristic for nurse rostering problems, Annals of Operations Research, 218 (2014), 185-199.
doi: 10.1007/s10479-012-1235-x. |
[17] |
J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester and L. De Boeck,
Personnel scheduling: A literature review, European Journal of Operational Research, 226 (2013), 367-385.
doi: 10.1016/j.ejor.2012.11.029. |
[18] |
S. C. Gao and C. W. Lin, Particle swarm optimization based nurses' shift scheduling, in Proceedings of the Institute of Industrial Engineers Asian Conference 2013, 2013,775–782.
doi: 10.1007/978-981-4451-98-7_93. |
[19] |
R. A. M. Gomes, T. A. M. Toffolo and H. G. Santos,
Variable neighborhood search accelerated column generation for the nurse rostering problem, Electronic Notes in Discrete Mathematics, 58 (2017), 31-38.
doi: 10.1016/j.endm.2017.03.005. |
[20] |
M. Hadwan, M. Ayob, N. R. Sabar and R. Qu,
A harmony search algorithm for nurse rostering problems, Information Sciences, 233 (2013), 126-140.
doi: 10.1016/j.ins.2012.12.025. |
[21] |
S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stølevik,
The first international nurse rostering competition 2010, Annals of Operations Research, 218 (2014), 221-236.
doi: 10.1007/s10479-012-1062-0. |
[22] |
F. Knust and L. Xie,
Simulated annealing approach to nurse rostering benchmark and real-world instances, Annals of Operations Research, 272 (2019), 187-216.
doi: 10.1007/s10479-017-2546-8. |
[23] |
Z. Lü and J.-K. Hao, Adaptive neighborhood search for nurse rostering, European Journal of Operational Research, 218 (2012), 865-876. Google Scholar |
[24] |
R. M'Hallah and A. Alkhabbaz,
Scheduling of nurses: A case study of a Kuwaiti health care unit, Operations Research for Health Care, 2 (2013), 1-19.
doi: 10.1016/j.orhc.2013.03.003. |
[25] |
N. Musliu and F. Winter,
A hybrid approach for the sudoku problem: Using constraint programming in iterated local search, IEEE Intelligent Systems, 32 (2017), 52-62.
doi: 10.1109/MIS.2017.29. |
[26] |
F. Mischek and N. Musliu,
Integer programming model extensions for a multi-stage nurse rostering problem, Annals of Operations Research, 275 (2019), 123-143.
doi: 10.1007/s10479-017-2623-z. |
[27] |
E. Rahimian, K. Akartunali and J. Levine,
A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems, European Journal of Operational Research, 258 (2017), 411-423.
doi: 10.1016/j.ejor.2016.09.030. |
[28] |
E. Rahimian, K. Akartunali and J. Levine,
A hybrid integer and constraint programming approach to solve nurse rostering problems, Computers and Operations Research, 82 (2017), 83-94.
doi: 10.1016/j.cor.2017.01.016. |
[29] |
H. G. Santos, T. A. M. Toffolo, R. A. M. Gomes and S. Ribas,
Integer programming techniques for the nurse rostering problem, Annals of Operations Research, 239 (2016), 225-251.
doi: 10.1007/s10479-014-1594-6. |
[30] |
A. M. Shahidin, M. S. M. Said, N. H. M. Said and N. I. A. Sazali, Developing optimal nurses work schedule using integer programming, AIP Conference Proceedings, 1870 (2017), 040031.
doi: 10.1063/1.4995863. |
[31] |
P. Smet, P. Brucker, P. D. Causmaecker and G. V. Berghe,
Polynomially solvable personnel rostering problems, European Journal of Operational Research, 249 (2016), 67-75.
doi: 10.1016/j.ejor.2015.08.025. |
[32] |
I. P. Solos, I. X. Tassopoulos and G. N. Beligiannis,
A generic two-phase stochastic variable neighborhood approach for effectively solving the nurse rostering problem, Algorithms, 6 (2013), 278-308.
doi: 10.3390/a6020278. |
[33] |
I. X. Tassopoulos, I. P. Solos and G. N. Beligiannis,
A two-phase adaptive variable neighborhood approach for nurse rostering, Computers and Operations Research, 60 (2015), 150-169.
doi: 10.1016/j.cor.2015.02.009. |
[34] |
T.-H. Wu, J.-Y. Yeh and Y.-M. Lee,
A particle swarm optimization approach with refinement procedure for nurse rostering problem, Computers and Operations Research, 54 (2015), 52-63.
doi: 10.1016/j.cor.2014.08.016. |
[35] |
Z. Zheng and X. Gong, Chemical reaction optimization for nurse rostering problem,, in Frontier and Future Development of Information Technology in Medicine and Education, Springer, Dordrecht, 2014, 3275–3279.
doi: 10.1007/978-94-007-7618-0_422. |
[36] |
Z. Zheng, X. Liu and X. Gong,
A simple randomized variable neighbourhood search for nurse rostering, Computers and Industrial Engineering, 110 (2017), 165-174.
doi: 10.1016/j.cie.2017.05.027. |
[37] |
, Instances & Results – Nurse Rostering Competition, (Accessed: April 25, 2019), https://www.kuleuven-kulak.be/nrpcompetition/instances-results. Google Scholar |








# | Days | Nurses | Shift types | Days-off | Shifts on/off |
01 | 14 | 8 | 1 | 8 | 26 |
02 | 14 | 14 | 2 | 14 | 62 |
03 | 14 | 20 | 3 | 20 | 64 |
04 | 28 | 10 | 2 | 20 | 71 |
05 | 28 | 16 | 2 | 32 | 106 |
06 | 28 | 18 | 3 | 36 | 135 |
07 | 28 | 20 | 3 | 40 | 168 |
08 | 28 | 30 | 4 | 60 | 225 |
09 | 28 | 36 | 4 | 72 | 232 |
10 | 28 | 40 | 5 | 80 | 284 |
11 | 28 | 50 | 6 | 100 | 336 |
12 | 28 | 60 | 10 | 120 | 422 |
13 | 28 | 120 | 18 | 240 | 841 |
14 | 42 | 32 | 4 | 128 | 359 |
15 | 42 | 45 | 6 | 180 | 490 |
16 | 56 | 20 | 3 | 120 | 280 |
17 | 56 | 30 | 4 | 160 | 480 |
18 | 84 | 22 | 3 | 176 | 414 |
19 | 84 | 40 | 5 | 320 | 834 |
20 | 182 | 50 | 6 | 900 | 2318 |
21 | 182 | 100 | 8 | 1800 | 4702 |
22 | 364 | 50 | 10 | 1800 | 4638 |
23 | 364 | 100 | 16 | 3600 | 9410 |
24 | 364 | 150 | 32 | 5400 | 13809 |
# | Days | Nurses | Shift types | Days-off | Shifts on/off |
01 | 14 | 8 | 1 | 8 | 26 |
02 | 14 | 14 | 2 | 14 | 62 |
03 | 14 | 20 | 3 | 20 | 64 |
04 | 28 | 10 | 2 | 20 | 71 |
05 | 28 | 16 | 2 | 32 | 106 |
06 | 28 | 18 | 3 | 36 | 135 |
07 | 28 | 20 | 3 | 40 | 168 |
08 | 28 | 30 | 4 | 60 | 225 |
09 | 28 | 36 | 4 | 72 | 232 |
10 | 28 | 40 | 5 | 80 | 284 |
11 | 28 | 50 | 6 | 100 | 336 |
12 | 28 | 60 | 10 | 120 | 422 |
13 | 28 | 120 | 18 | 240 | 841 |
14 | 42 | 32 | 4 | 128 | 359 |
15 | 42 | 45 | 6 | 180 | 490 |
16 | 56 | 20 | 3 | 120 | 280 |
17 | 56 | 30 | 4 | 160 | 480 |
18 | 84 | 22 | 3 | 176 | 414 |
19 | 84 | 40 | 5 | 320 | 834 |
20 | 182 | 50 | 6 | 900 | 2318 |
21 | 182 | 100 | 8 | 1800 | 4702 |
22 | 364 | 50 | 10 | 1800 | 4638 |
23 | 364 | 100 | 16 | 3600 | 9410 |
24 | 364 | 150 | 32 | 5400 | 13809 |
Instance | Classical mechanism | Destroy-and-recreate mechanism |
01 | 607 | 607 |
02 | 828 | 922 |
03 | 1001 | 1002 |
04 | 1721 | 1717 |
05 | 1249 | 1330 |
06 | 2053 | 2147 |
07 | 1077 | 1073 |
08 | 1425 | 1741 |
09 | 449 | 446 |
10 | 4679 | 4320 |
11 | 3458 | 3513 |
12 | 4217 | 4327 |
13 | 2423 | 2396 |
14 | 1377 | 1584 |
15 | 4996 | 5017 |
16 | 3550 | 3556 |
17 | 6391 | 6506 |
18 | 5177 | 5601 |
19 | 4789 | 5177 |
20 | 9097 | 7689 |
21 | 29486 | 27071 |
22 | 61690 | 58226 |
23 | 62195 | 53694 |
24 | 402313 | 248016 |
Instance | Classical mechanism | Destroy-and-recreate mechanism |
01 | 607 | 607 |
02 | 828 | 922 |
03 | 1001 | 1002 |
04 | 1721 | 1717 |
05 | 1249 | 1330 |
06 | 2053 | 2147 |
07 | 1077 | 1073 |
08 | 1425 | 1741 |
09 | 449 | 446 |
10 | 4679 | 4320 |
11 | 3458 | 3513 |
12 | 4217 | 4327 |
13 | 2423 | 2396 |
14 | 1377 | 1584 |
15 | 4996 | 5017 |
16 | 3550 | 3556 |
17 | 6391 | 6506 |
18 | 5177 | 5601 |
19 | 4789 | 5177 |
20 | 9097 | 7689 |
21 | 29486 | 27071 |
22 | 61690 | 58226 |
23 | 62195 | 53694 |
24 | 402313 | 248016 |
Instance | VNS–DP | Ejection chain | Gurobi | Branch & price | CP–ILS |
01 | 607 | 607 | 607 | 607 | 607 |
02 | 828 | 837 | 828 | 828 | 828 |
03 | 1001 | 1003 | 1001 | 1001 | 1001 |
04 | 1716 | 1718 | 1716 | 1716 | 1716 |
05 | 1237 | 1358 | 1143 | 1160 | 1147 |
06 | 2141 | 2258 | 1950 | 1952 | 2050 |
07 | 1080 | 1269 | 1056 | 1058 | 1084 |
08 | 1452 | 2260 | 1306 | 1308 | 1464 |
09 | 446 | 463 | 439 | 439 | 454 |
10 | 4656 | 4797 | 4631 | 4631 | 4667 |
11 | 3512 | 3661 | 3443 | 3443 | 3457 |
12 | 4119 | 5211 | 4040 | 4046 | 4308 |
13 | 2120 | 2663 | 3109 | – | 2961 |
14 | 1344 | 1847 | 1278 | – | 1432 |
15 | 4637 | 5935 | 4843 | – | 4570 |
16 | 3458 | 4048 | 3225 | 3323 | 3748 |
17 | 6190 | 7835 | 5749 | – | 6609 |
18 | 5095 | 6404 | 4760 | – | 5416 |
19 | 4281 | 5531 | 5078 | – | 4364 |
20 | 7274 | 9750 | 3591 | – | 6654 |
21 | 26263 | 36688 | 132445 | – | 22549 |
22 | 56091 | 516686 | 265504 | – | 48382 |
23 | 51699 | 54384 | – | – | 38337 |
24 | 226490 | 156858 | – | – | 177037 |
Instance | VNS–DP | Ejection chain | Gurobi | Branch & price | CP–ILS |
01 | 607 | 607 | 607 | 607 | 607 |
02 | 828 | 837 | 828 | 828 | 828 |
03 | 1001 | 1003 | 1001 | 1001 | 1001 |
04 | 1716 | 1718 | 1716 | 1716 | 1716 |
05 | 1237 | 1358 | 1143 | 1160 | 1147 |
06 | 2141 | 2258 | 1950 | 1952 | 2050 |
07 | 1080 | 1269 | 1056 | 1058 | 1084 |
08 | 1452 | 2260 | 1306 | 1308 | 1464 |
09 | 446 | 463 | 439 | 439 | 454 |
10 | 4656 | 4797 | 4631 | 4631 | 4667 |
11 | 3512 | 3661 | 3443 | 3443 | 3457 |
12 | 4119 | 5211 | 4040 | 4046 | 4308 |
13 | 2120 | 2663 | 3109 | – | 2961 |
14 | 1344 | 1847 | 1278 | – | 1432 |
15 | 4637 | 5935 | 4843 | – | 4570 |
16 | 3458 | 4048 | 3225 | 3323 | 3748 |
17 | 6190 | 7835 | 5749 | – | 6609 |
18 | 5095 | 6404 | 4760 | – | 5416 |
19 | 4281 | 5531 | 5078 | – | 4364 |
20 | 7274 | 9750 | 3591 | – | 6654 |
21 | 26263 | 36688 | 132445 | – | 22549 |
22 | 56091 | 516686 | 265504 | – | 48382 |
23 | 51699 | 54384 | – | – | 38337 |
24 | 226490 | 156858 | – | – | 177037 |
Instance | VNS–DP | IP–VNS |
01 | 607 | 607 |
02 | 828 | 828 |
03 | 1001 | 1001 |
04 | 1716 | 1716 |
05 | 1237 | 1143 |
06 | 2141 | 1950 |
07 | 1080 | 1056 |
08 | 1452 | 1344 |
09 | 446 | 439 |
10 | 4656 | 4631 |
11 | 3512 | 3443 |
12 | 4119 | 4040 |
13 | 2120 | 1905 |
14 | 1344 | 1279 |
15 | 4637 | 3928 |
16 | 3458 | 3225 |
17 | 6190 | 5750 |
18 | 5095 | 4662 |
19 | 4281 | 3224 |
20 | 7274 | 4913 |
21 | 26263 | 23191 |
22 | 56091 | 32126 |
23 | 51699 | 3794 |
24 | 226490 | 2281440 |
Instance | VNS–DP | IP–VNS |
01 | 607 | 607 |
02 | 828 | 828 |
03 | 1001 | 1001 |
04 | 1716 | 1716 |
05 | 1237 | 1143 |
06 | 2141 | 1950 |
07 | 1080 | 1056 |
08 | 1452 | 1344 |
09 | 446 | 439 |
10 | 4656 | 4631 |
11 | 3512 | 3443 |
12 | 4119 | 4040 |
13 | 2120 | 1905 |
14 | 1344 | 1279 |
15 | 4637 | 3928 |
16 | 3458 | 3225 |
17 | 6190 | 5750 |
18 | 5095 | 4662 |
19 | 4281 | 3224 |
20 | 7274 | 4913 |
21 | 26263 | 23191 |
22 | 56091 | 32126 |
23 | 51699 | 3794 |
24 | 226490 | 2281440 |
Instance | BKS | VNS–DP | ANS | VDS | RVNS | HHSA |
Sprint_early01 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early02 | 58 | 58 | 58 | 58 | 58 | 58 |
Sprint_early03 | 51 | 51 | 51 | 51 | 51 | 51 |
Sprint_early04 | 59 | 59 | 59 | 59 | 59 | 59 |
Sprint_early05 | 58 | 58 | 58 | 58 | 58 | 58 |
Sprint_early06 | 54 | 54 | 54 | 54 | 54 | 54 |
Sprint_early07 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early08 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early09 | 55 | 55 | 55 | 55 | 55 | 55 |
Sprint_early10 | 52 | 52 | 52 | 52 | 52 | 52 |
Sprint_late01 | 37 | 37 | 37 | 37 | 37 | 37 |
Sprint_late02 | 42 | 42 | 42 | 42 | 42 | 42 |
Sprint_late03 | 48 | 48 | 48 | 48 | 48 | 48 |
Sprint_late04 | 73 | 73 | 73 | 75 | 73 | 73 |
Sprint_late05 | 44 | 45 | 44 | 44 | 44 | 44 |
Sprint_late06 | 42 | 43 | 42 | 42 | 42 | 42 |
Sprint_late07 | 42 | 47 | 42 | 42 | 43 | 43 |
Sprint_late08 | 17 | 17 | 17 | 17 | 17 | 17 |
Sprint_late09 | 17 | 17 | 17 | 17 | 17 | 17 |
Sprint_late10 | 43 | 44 | 43 | 43 | 43 | 43 |
Sprint_hidden01 | 32 | 34 | 32 | – | 32 | 32 |
Sprint_hidden02 | 32 | 32 | 32 | – | 32 | 32 |
Sprint_hidden03 | 62 | 62 | 62 | – | 62 | 62 |
Sprint_hidden04 | 66 | 67 | 66 | – | 66 | 66 |
Sprint_hidden05 | 59 | 59 | 59 | – | 59 | 59 |
Sprint_hidden06 | 130 | 141 | 130 | – | – | 130 |
Sprint_hidden07 | 153 | 153 | 153 | – | – | 153 |
Sprint_hidden08 | 204 | 204 | 204 | – | – | 204 |
Sprint_hidden09 | 338 | 338 | 338 | – | – | 338 |
Sprint_hidden10 | 306 | 306 | 306 | – | – | 306 |
Medium_early01 | 240 | 243 | 240 | 244 | 240 | 243 |
Medium_early02 | 240 | 241 | 240 | 241 | 240 | 242 |
Medium_early03 | 236 | 238 | 236 | 238 | 236 | 238 |
Medium_early04 | 237 | 240 | 237 | 240 | 237 | 240 |
Medium_early05 | 303 | 303 | 303 | 308 | 303 | 305 |
Medium_late01 | 157 | 157 | 164 | 187 | 158 | 169 |
Medium_late02 | 18 | 31 | 20 | 22 | 20 | 26 |
Medium_late03 | 29 | 29 | 30 | 46 | 30 | 34 |
Medium_late04 | 35 | 35 | 36 | 49 | 35 | 42 |
Medium_late05 | 107 | 140 | 117 | 161 | 111 | 131 |
Medium_hidden01 | 111 | 111 | 122 | – | 117 | 143 |
Medium_hidden02 | 219 | 219 | 224 | – | 225 | 248 |
Medium_hidden03 | 34 | 34 | 35 | – | 34 | 49 |
Medium_hidden04 | 78 | 78 | 80 | – | 79 | 87 |
Medium_hidden05 | 118 | 118 | 120 | – | 122 | 169 |
Long_early01 | 197 | 197 | 197 | 198 | 197 | 197 |
Long_early02 | 219 | 221 | 222 | 223 | 219 | 226 |
Long_early03 | 240 | 240 | 240 | 242 | 240 | 240 |
Long_early04 | 303 | 303 | 303 | 305 | 303 | 303 |
Long_early05 | 284 | 284 | 284 | 286 | 284 | 284 |
Long_late01 | 235 | 240 | 237 | 286 | 235 | 253 |
Long_late02 | 229 | 229 | 229 | 290 | 229 | 256 |
Long_late03 | 220 | 220 | 222 | 290 | 221 | 256 |
Long_late04 | 221 | 221 | 227 | 280 | 224 | 263 |
Long_late05 | 83 | 89 | 83 | 110 | 83 | 98 |
Long_hidden01 | 346 | 346 | 346 | – | 349 | 380 |
Long_hidden02 | 89 | 89 | 89 | – | 89 | 110 |
Long_hidden03 | 38 | 38 | 38 | – | 38 | 44 |
Long_hidden04 | 22 | 22 | 22 | – | 22 | 27 |
Long_hidden05 | 41 | 41 | 45 | – | 41 | 53 |
Instance | BKS | VNS–DP | ANS | VDS | RVNS | HHSA |
Sprint_early01 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early02 | 58 | 58 | 58 | 58 | 58 | 58 |
Sprint_early03 | 51 | 51 | 51 | 51 | 51 | 51 |
Sprint_early04 | 59 | 59 | 59 | 59 | 59 | 59 |
Sprint_early05 | 58 | 58 | 58 | 58 | 58 | 58 |
Sprint_early06 | 54 | 54 | 54 | 54 | 54 | 54 |
Sprint_early07 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early08 | 56 | 56 | 56 | 56 | 56 | 56 |
Sprint_early09 | 55 | 55 | 55 | 55 | 55 | 55 |
Sprint_early10 | 52 | 52 | 52 | 52 | 52 | 52 |
Sprint_late01 | 37 | 37 | 37 | 37 | 37 | 37 |
Sprint_late02 | 42 | 42 | 42 | 42 | 42 | 42 |
Sprint_late03 | 48 | 48 | 48 | 48 | 48 | 48 |
Sprint_late04 | 73 | 73 | 73 | 75 | 73 | 73 |
Sprint_late05 | 44 | 45 | 44 | 44 | 44 | 44 |
Sprint_late06 | 42 | 43 | 42 | 42 | 42 | 42 |
Sprint_late07 | 42 | 47 | 42 | 42 | 43 | 43 |
Sprint_late08 | 17 | 17 | 17 | 17 | 17 | 17 |
Sprint_late09 | 17 | 17 | 17 | 17 | 17 | 17 |
Sprint_late10 | 43 | 44 | 43 | 43 | 43 | 43 |
Sprint_hidden01 | 32 | 34 | 32 | – | 32 | 32 |
Sprint_hidden02 | 32 | 32 | 32 | – | 32 | 32 |
Sprint_hidden03 | 62 | 62 | 62 | – | 62 | 62 |
Sprint_hidden04 | 66 | 67 | 66 | – | 66 | 66 |
Sprint_hidden05 | 59 | 59 | 59 | – | 59 | 59 |
Sprint_hidden06 | 130 | 141 | 130 | – | – | 130 |
Sprint_hidden07 | 153 | 153 | 153 | – | – | 153 |
Sprint_hidden08 | 204 | 204 | 204 | – | – | 204 |
Sprint_hidden09 | 338 | 338 | 338 | – | – | 338 |
Sprint_hidden10 | 306 | 306 | 306 | – | – | 306 |
Medium_early01 | 240 | 243 | 240 | 244 | 240 | 243 |
Medium_early02 | 240 | 241 | 240 | 241 | 240 | 242 |
Medium_early03 | 236 | 238 | 236 | 238 | 236 | 238 |
Medium_early04 | 237 | 240 | 237 | 240 | 237 | 240 |
Medium_early05 | 303 | 303 | 303 | 308 | 303 | 305 |
Medium_late01 | 157 | 157 | 164 | 187 | 158 | 169 |
Medium_late02 | 18 | 31 | 20 | 22 | 20 | 26 |
Medium_late03 | 29 | 29 | 30 | 46 | 30 | 34 |
Medium_late04 | 35 | 35 | 36 | 49 | 35 | 42 |
Medium_late05 | 107 | 140 | 117 | 161 | 111 | 131 |
Medium_hidden01 | 111 | 111 | 122 | – | 117 | 143 |
Medium_hidden02 | 219 | 219 | 224 | – | 225 | 248 |
Medium_hidden03 | 34 | 34 | 35 | – | 34 | 49 |
Medium_hidden04 | 78 | 78 | 80 | – | 79 | 87 |
Medium_hidden05 | 118 | 118 | 120 | – | 122 | 169 |
Long_early01 | 197 | 197 | 197 | 198 | 197 | 197 |
Long_early02 | 219 | 221 | 222 | 223 | 219 | 226 |
Long_early03 | 240 | 240 | 240 | 242 | 240 | 240 |
Long_early04 | 303 | 303 | 303 | 305 | 303 | 303 |
Long_early05 | 284 | 284 | 284 | 286 | 284 | 284 |
Long_late01 | 235 | 240 | 237 | 286 | 235 | 253 |
Long_late02 | 229 | 229 | 229 | 290 | 229 | 256 |
Long_late03 | 220 | 220 | 222 | 290 | 221 | 256 |
Long_late04 | 221 | 221 | 227 | 280 | 224 | 263 |
Long_late05 | 83 | 89 | 83 | 110 | 83 | 98 |
Long_hidden01 | 346 | 346 | 346 | – | 349 | 380 |
Long_hidden02 | 89 | 89 | 89 | – | 89 | 110 |
Long_hidden03 | 38 | 38 | 38 | – | 38 | 44 |
Long_hidden04 | 22 | 22 | 22 | – | 22 | 27 |
Long_hidden05 | 41 | 41 | 45 | – | 41 | 53 |
Competition track | VNS–DP | ANS | HHSA |
Sprint (30 instances) | 77% | 100% | 97% |
Medium (15 instances) | 60% | 33% | 0% |
Long (15 instances) | 80% | 67% | 27% |
Competition track | VNS–DP | ANS | HHSA |
Sprint (30 instances) | 77% | 100% | 97% |
Medium (15 instances) | 60% | 33% | 0% |
Long (15 instances) | 80% | 67% | 27% |
[1] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[2] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[5] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[6] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[7] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]