# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020069

## Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers

 School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University), Patiala-147004, Punjab, India

Received  August 2019 Revised  December 2019 Published  March 2020

Complex intuitionistic fuzzy sets (CIFSs), characterized by complex-valued grades of membership and non-membership, are a generalization of standard intuitionistic fuzzy (IF) sets that better speak to time-periodic issues and handle two-dimensional data in a solitary set. Under this environment, in this article, various mean-type operators, namely complex IF Bonferroni means (CIFBM) and complex IF weighted Bonferroni mean (CIFWBM) are presented along with their properties and numerous particular cases of CIFBM are discussed. Further, using the presented operators a decision-making approach is developed and is illustrated with the help of a practical example. Also, the reliability of the developed methodology is investigated with the aid of validity test criteria and the example results are compared with prevailing methods based on operators.

Citation: Harish Garg, Dimple Rani. Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020069
##### References:

show all references

##### References:
Variation in score values with parameter $p$ by fixing $q$
Score values of alternatives $\mathcal{H}_u$ for different values of $p$, $q$
Comparison of CIFS model with existing models in literature
 Model Uncertainty Falsity Hesitation Periodicity Ability to represent two-dimensional information Fuzzy set $\checkmark$ $\times$ $\times$ $\times$ $\times$ Interval-valued fuzzy set $\checkmark$ $\times$ $\times$ $\times$ $\times$ Intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\times$ $\times$ Interval-valued intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\times$ $\times$ Complex fuzzy set $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ Interval-valued complex fuzzy set $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ Complex intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$
 Model Uncertainty Falsity Hesitation Periodicity Ability to represent two-dimensional information Fuzzy set $\checkmark$ $\times$ $\times$ $\times$ $\times$ Interval-valued fuzzy set $\checkmark$ $\times$ $\times$ $\times$ $\times$ Intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\times$ $\times$ Interval-valued intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\times$ $\times$ Complex fuzzy set $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ Interval-valued complex fuzzy set $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ Complex intuitionistic fuzzy set $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$
Input information in the form of the complex intuitionistic fuzzy decision-matrix
 $\mathcal{C}_1$ $\mathcal{C}_2$ $\mathcal{C}_3$ $\mathcal{C}_4$ $\mathcal{H}_1$ $\big ( (0.7, 0.9), (0.1, 0.1) \big )$ $\big ( (0.8, 0.5), (0.1, 0.4) \big )$ $\big ( (0.6, 0.6), (0.3, 0.2) \big )$ $\big ( (0.7, 0.7), (0.3, 0.2) \big )$ $\mathcal{H}_2$ $\big ( (0.7, 0.6), (0.3, 0.3) \big )$ $\big ( (0.4, 0.9), (0.2, 0.1) \big )$ $\big ( (0.7, 0.7), (0.2, 0.3) \big )$ $\big ( (0.4, 0.6), (0.3, 0.1) \big )$ $\mathcal{H}_3$ $\big ( (0.3, 0.4), (0.6, 0.4) \big )$ $\big ( (0.6, 0.6), (0.3, 0.4) \big )$ $\big ( (0.3, 0.4), (0.5, 0.6) \big )$ $\big ( (0.7, 0.7), (0.1, 0.1) \big )$ $\mathcal{H}_4$ $\big ( (0.4, 0.8), (0.5, 0.1) \big )$ $\big ( (0.7, 0.3), (0.3, 0.3) \big )$ $\big ( (0.6, 0.5), (0.1, 0.3) \big )$ $\big ( (0.5, 0.5), (0.3, 0.4) \big )$ $\mathcal{H}_5$ $\big ( (0.9, 0.7), (0.1, 0.2) \big )$ $\big ( (0.7, 0.7), (0.2, 0.1) \big )$ $\big ( (0.7, 0.6), (0.2, 0.2) \big )$ $\big ( (0.8, 0.8), (0.1, 0.1) \big )$
 $\mathcal{C}_1$ $\mathcal{C}_2$ $\mathcal{C}_3$ $\mathcal{C}_4$ $\mathcal{H}_1$ $\big ( (0.7, 0.9), (0.1, 0.1) \big )$ $\big ( (0.8, 0.5), (0.1, 0.4) \big )$ $\big ( (0.6, 0.6), (0.3, 0.2) \big )$ $\big ( (0.7, 0.7), (0.3, 0.2) \big )$ $\mathcal{H}_2$ $\big ( (0.7, 0.6), (0.3, 0.3) \big )$ $\big ( (0.4, 0.9), (0.2, 0.1) \big )$ $\big ( (0.7, 0.7), (0.2, 0.3) \big )$ $\big ( (0.4, 0.6), (0.3, 0.1) \big )$ $\mathcal{H}_3$ $\big ( (0.3, 0.4), (0.6, 0.4) \big )$ $\big ( (0.6, 0.6), (0.3, 0.4) \big )$ $\big ( (0.3, 0.4), (0.5, 0.6) \big )$ $\big ( (0.7, 0.7), (0.1, 0.1) \big )$ $\mathcal{H}_4$ $\big ( (0.4, 0.8), (0.5, 0.1) \big )$ $\big ( (0.7, 0.3), (0.3, 0.3) \big )$ $\big ( (0.6, 0.5), (0.1, 0.3) \big )$ $\big ( (0.5, 0.5), (0.3, 0.4) \big )$ $\mathcal{H}_5$ $\big ( (0.9, 0.7), (0.1, 0.2) \big )$ $\big ( (0.7, 0.7), (0.2, 0.1) \big )$ $\big ( (0.7, 0.6), (0.2, 0.2) \big )$ $\big ( (0.8, 0.8), (0.1, 0.1) \big )$
Ranking on changing values of $p$ and $q$
 Values of $p$ and $q$ Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ $p=1$; $q=1$ -0.8301 -0.9395 -1.2343 -1.1190 -0.6852 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=1$; $q=2$ -0.7549 -0.9000 -1.1946 -1.0670 -0.6387 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=2$; $q=2$ -0.7566 -0.8957 -1.1800 -1.0779 -0.6358 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=2$; $q=3$ -0.7017 -0.8657 -1.1530 -1.0419 -0.6009 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=3.5$; $q=0.1$ -0.4369 -0.7490 -1.0863 -0.8261 -0.4493 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=4$; $q=0.1$ -0.3898 -0.7234 -1.0694 -0.7911 -0.4178 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=5$; $q=0.5$ -0.3927 -0.7177 -1.0684 -0.7962 -0.4108 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=6$; $q=1$ -0.3966 -0.7141 -1.0639 -0.8049 -0.4050 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$
 Values of $p$ and $q$ Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ $p=1$; $q=1$ -0.8301 -0.9395 -1.2343 -1.1190 -0.6852 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=1$; $q=2$ -0.7549 -0.9000 -1.1946 -1.0670 -0.6387 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=2$; $q=2$ -0.7566 -0.8957 -1.1800 -1.0779 -0.6358 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=2$; $q=3$ -0.7017 -0.8657 -1.1530 -1.0419 -0.6009 $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=3.5$; $q=0.1$ -0.4369 -0.7490 -1.0863 -0.8261 -0.4493 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=4$; $q=0.1$ -0.3898 -0.7234 -1.0694 -0.7911 -0.4178 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=5$; $q=0.5$ -0.3927 -0.7177 -1.0684 -0.7962 -0.4108 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $p=6$; $q=1$ -0.3966 -0.7141 -1.0639 -0.8049 -0.4050 $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$
Analysis of the Figures 1(a), 1(b), 1(c) and 1(d)
 Value of $\wp$ Accuracy for $p=\wp$ Ranking of the alternatives When $p<\wp$ When $p=\wp$ When $p<\wp$ Figure 1(a) $5.55$ $H(\mathcal{H}_1)=1.8380$, $H(\mathcal{H}_5)=1.8689$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(b) $-$ $-$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(c) $1.593$ $H(\mathcal{H}_1)=1.8307$, $H(\mathcal{H}_5)=1.8686$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(d) $2.93$ $H(\mathcal{H}_1)=1.8191$, $H(\mathcal{H}_5)=1.8656$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$
 Value of $\wp$ Accuracy for $p=\wp$ Ranking of the alternatives When $p<\wp$ When $p=\wp$ When $p<\wp$ Figure 1(a) $5.55$ $H(\mathcal{H}_1)=1.8380$, $H(\mathcal{H}_5)=1.8689$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(b) $-$ $-$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(c) $1.593$ $H(\mathcal{H}_1)=1.8307$, $H(\mathcal{H}_5)=1.8686$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ Figure 1(d) $2.93$ $H(\mathcal{H}_1)=1.8191$, $H(\mathcal{H}_5)=1.8656$ $\mathcal{H}_1\succ \mathcal{H}_5\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$ $\mathcal{H}_5\succ \mathcal{H}_1\succ \mathcal{H}_2\succ \mathcal{H}_4\succ \mathcal{H}_3$
Comparative Analysis results with CIFS studies
 Method used Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ Method based on CIFWA operator [19] 1.1605 0.8812 0.3491 0.6484 1.2545 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on CIFWPA operator [37] 1.1449 0.8829 0.3540 0.6432 1.2504 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Distance measure [3] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Euclidean distance measure [36] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Correlation coefficient [20] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=1)$ -0.8301 -0.9395 -1.2343 -1.1190 -0.6852 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=10)$ -0.2174 -0.6143 -0.9993 -0.6744 -0.2686 $\mathcal{H}_1 \succ \mathcal{H}_5 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=0)$ -0.6921 -0.8863 -1.1942 -1.0262 -0.6041 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ $Used: t(a)=-\log(a)$ for $0< a \leq 1$ with $t(0)=\infty$ in [19], $\alpha_1=\beta_1=\sigma_1=\alpha_2=\beta_2=\sigma_2=\frac{1}{3}$ in [3]
 Method used Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ Method based on CIFWA operator [19] 1.1605 0.8812 0.3491 0.6484 1.2545 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on CIFWPA operator [37] 1.1449 0.8829 0.3540 0.6432 1.2504 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Distance measure [3] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Euclidean distance measure [36] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Method based on Correlation coefficient [20] - $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=1)$ -0.8301 -0.9395 -1.2343 -1.1190 -0.6852 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=10)$ -0.2174 -0.6143 -0.9993 -0.6744 -0.2686 $\mathcal{H}_1 \succ \mathcal{H}_5 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Proposed method with $(p=1;q=0)$ -0.6921 -0.8863 -1.1942 -1.0262 -0.6041 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ $Used: t(a)=-\log(a)$ for $0< a \leq 1$ with $t(0)=\infty$ in [19], $\alpha_1=\beta_1=\sigma_1=\alpha_2=\beta_2=\sigma_2=\frac{1}{3}$ in [3]
Comparative Analysis results with IFS studies
 Method used Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ Xu and Yager [42] method based on IFWBM operator $(p=1;q=1)$ -0.3968 -0.5370 -0.6319 -0.5754 -0.3136 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu [41] method based on IFPWA operator 0.5653 0.3332 0.1484 0.2441 0.6839 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Wang and Liu [39] method based on IFEWA operator 0.5670 0.3276 0.1183 0.2181 0.6871 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu and Yager [44] based on IFWG operator 0.5314 0.2826 -0.0179 0.1466 0.6536 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu [43] method based on IFWA operator 0.5701 0.3351 0.1432 0.2301 0.6898 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [10] method based on IFEWGIA operator 0.6563 0.4787 0.0142 0.2849 0.7193 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ He et al. [24] method based on IFGIA method 0.6484 0.4768 -0.0085 0.2707 0.7172 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Huang [25] method based on IFHWA operator 0.5658 0.3241 0.1064 0.2127 0.6860 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [11] method 0.4307 0.1603 0.0710 0.0694 0.6375 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Chen and Chang [8] method 0.4339 0.1804 0.1000 0.0845 0.6435 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Goyal et al.[23] method 0.7982 0.6623 0.3109 0.4510 0.8604 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [12] method 0.4316 0.1669 0.0809 0.0743 0.6392 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Ye [48] method 0.5506 0.3084 0.0596 0.1876 0.6715 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Zhou and Xu [50] method 0.5868 0.3824 0.3288 0.3776 0.6979 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ The proposed CIFWBM operator $(p=1;q=1)$ -1.3968 -1.5370 -1.6319 -1.5754 -1.3136 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ The proposed CIFWBM operator $(p=1;q=0)$ -1.3485 -1.5108 -1.6119 -1.5700 -1.2525 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Abbreviations. IFWA: Intuitionistic fuzzy weighted averaging; IFWG: Intuitionistic fuzzy weighted geometric; IFEWA: intuitionistic fuzzy Einstein weighted averaging; IFPWA: intuitionistic fuzzy power weighted averaging; IFWBM: intuitionistic fuzzy weighted Bonferroni mean; IFGIA: intuitionistic fuzzy geometric interactive averaging; IFEWGIA: intuitionistic fuzzy Einstein weighted geometric interactive averaging; IFHWA: intuitionistic fuzzy Hamacher weighted averaging; CIFWBM: complex intuitionistic fuzzy weighted Bonferroni mean.
 Method used Score values Ranking $\mathcal{H}_1$ $\mathcal{H}_2$ $\mathcal{H}_3$ $\mathcal{H}_4$ $\mathcal{H}_5$ Xu and Yager [42] method based on IFWBM operator $(p=1;q=1)$ -0.3968 -0.5370 -0.6319 -0.5754 -0.3136 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu [41] method based on IFPWA operator 0.5653 0.3332 0.1484 0.2441 0.6839 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Wang and Liu [39] method based on IFEWA operator 0.5670 0.3276 0.1183 0.2181 0.6871 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu and Yager [44] based on IFWG operator 0.5314 0.2826 -0.0179 0.1466 0.6536 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Xu [43] method based on IFWA operator 0.5701 0.3351 0.1432 0.2301 0.6898 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [10] method based on IFEWGIA operator 0.6563 0.4787 0.0142 0.2849 0.7193 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ He et al. [24] method based on IFGIA method 0.6484 0.4768 -0.0085 0.2707 0.7172 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Huang [25] method based on IFHWA operator 0.5658 0.3241 0.1064 0.2127 0.6860 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [11] method 0.4307 0.1603 0.0710 0.0694 0.6375 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Chen and Chang [8] method 0.4339 0.1804 0.1000 0.0845 0.6435 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Goyal et al.[23] method 0.7982 0.6623 0.3109 0.4510 0.8604 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Garg [12] method 0.4316 0.1669 0.0809 0.0743 0.6392 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_3 \succ \mathcal{H}_4$ Ye [48] method 0.5506 0.3084 0.0596 0.1876 0.6715 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Zhou and Xu [50] method 0.5868 0.3824 0.3288 0.3776 0.6979 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ The proposed CIFWBM operator $(p=1;q=1)$ -1.3968 -1.5370 -1.6319 -1.5754 -1.3136 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ The proposed CIFWBM operator $(p=1;q=0)$ -1.3485 -1.5108 -1.6119 -1.5700 -1.2525 $\mathcal{H}_5 \succ \mathcal{H}_1 \succ \mathcal{H}_2 \succ \mathcal{H}_4 \succ \mathcal{H}_3$ Abbreviations. IFWA: Intuitionistic fuzzy weighted averaging; IFWG: Intuitionistic fuzzy weighted geometric; IFEWA: intuitionistic fuzzy Einstein weighted averaging; IFPWA: intuitionistic fuzzy power weighted averaging; IFWBM: intuitionistic fuzzy weighted Bonferroni mean; IFGIA: intuitionistic fuzzy geometric interactive averaging; IFEWGIA: intuitionistic fuzzy Einstein weighted geometric interactive averaging; IFHWA: intuitionistic fuzzy Hamacher weighted averaging; CIFWBM: complex intuitionistic fuzzy weighted Bonferroni mean.
The characteristic comparison of different approaches
 Method Captures interrelationship among arguments Ability to capture information using complex numbers Ability to handle two-dimensional information Ability to integrate Information Flexible according to decision-maker's preferences In [37] $\times$ $\checkmark$ $\checkmark$ $\checkmark$ $\times$ In [19] $\times$ $\checkmark$ $\checkmark$ $\checkmark$ $\times$ In [3] $\times$ $\checkmark$ $\checkmark$ $\times$ $\checkmark$ In [36] $\times$ $\checkmark$ $\checkmark$ $\times$ $\times$ In [42] $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ In [41] $\times$ $\times$ $\times$ $\checkmark$ $\times$ In [39] $\times$ $\times$ $\times$ $\checkmark$ $\times$ The proposed approach $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$
 Method Captures interrelationship among arguments Ability to capture information using complex numbers Ability to handle two-dimensional information Ability to integrate Information Flexible according to decision-maker's preferences In [37] $\times$ $\checkmark$ $\checkmark$ $\checkmark$ $\times$ In [19] $\times$ $\checkmark$ $\checkmark$ $\checkmark$ $\times$ In [3] $\times$ $\checkmark$ $\checkmark$ $\times$ $\checkmark$ In [36] $\times$ $\checkmark$ $\checkmark$ $\times$ $\times$ In [42] $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ In [41] $\times$ $\times$ $\times$ $\checkmark$ $\times$ In [39] $\times$ $\times$ $\times$ $\checkmark$ $\times$ The proposed approach $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$
 [1] Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047 [2] Muhammad Qiyas, Saleem Abdullah, Shahzaib Ashraf, Saifullah Khan, Aziz Khan. Triangular picture fuzzy linguistic induced ordered weighted aggregation operators and its application on decision making problems. Mathematical Foundations of Computing, 2019, 2 (3) : 183-201. doi: 10.3934/mfc.2019013 [3] Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial & Management Optimization, 2020, 16 (1) : 445-467. doi: 10.3934/jimo.2018162 [4] Gleb Beliakov. Construction of aggregation operators for automated decision making via optimal interpolation and global optimization. Journal of Industrial & Management Optimization, 2007, 3 (2) : 193-208. doi: 10.3934/jimo.2007.3.193 [5] Harish Garg. Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1501-1519. doi: 10.3934/jimo.2018018 [6] Ana F. Carazo, Ignacio Contreras, Trinidad Gómez, Fátima Pérez. A project portfolio selection problem in a group decision-making context. Journal of Industrial & Management Optimization, 2012, 8 (1) : 243-261. doi: 10.3934/jimo.2012.8.243 [7] Jian Jin, Weijian Mi. An AIMMS-based decision-making model for optimizing the intelligent stowage of export containers in a single bay. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1101-1115. doi: 10.3934/dcdss.2019076 [8] Xue Yan, Heap-Yih Chong, Jing Zhou, Zhaohan Sheng, Feng Xu. Fairness preference based decision-making model for concession period in PPP projects. Journal of Industrial & Management Optimization, 2020, 16 (1) : 11-23. doi: 10.3934/jimo.2018137 [9] Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020134 [10] Zhen Ming Ma, Ze Shui Xu, Wei Yang. Approach to the consistency and consensus of Pythagorean fuzzy preference relations based on their partial orders in group decision making. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020086 [11] Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285 [12] Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701 [13] Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53. [14] Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial & Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171 [15] Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623 [16] Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077 [17] Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 [18] Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83 [19] Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 [20] Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables