July  2009, 3(3): 359-378. doi: 10.3934/jmd.2009.3.359

Logarithm laws for unipotent flows, I

1. 

Department of Mathematics, Yale University, New Haven, CT 06520-8283, United States, United States

Received  November 2008 Revised  May 2009 Published  August 2009

We prove analogs of the logarithm laws of Sullivan and Kleinbock--Margulis in the context of unipotent flows. In particular, we obtain results for one-parameter actions on the space of lattices SL(n, $\R$)/SL(n, $\Z$). The key lemma for our results says the measure of the set of unimodular lattices in $\R^n$ that does not intersect a 'large' volume subset of $\R^n$ is 'small'. This can be considered as a 'random' analog of the classical Minkowski Theorem in the geometry of numbers.
Citation: Jayadev S. Athreya, Gregory A. Margulis. Logarithm laws for unipotent flows, I. Journal of Modern Dynamics, 2009, 3 (3) : 359-378. doi: 10.3934/jmd.2009.3.359
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]