-
Previous Article
Structure of attractors for $(a,b)$-continued fraction transformations
- JMD Home
- This Issue
-
Next Article
New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions
Ratner's property and mild mixing for special flows over two-dimensional rotations
1. | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń |
2. | Faculty of Mathematics and Computer Science, N. Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland |
References:
[1] |
J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations,", Cambridge Univ. Press, (2003).
doi: 10.1017/CBO9780511546563. |
[2] |
V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods,, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1.
|
[3] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory,", Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1982).
|
[4] |
B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus,, Bull. Soc. Math. France, 129 (2001), 487.
|
[5] |
B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.
doi: 10.1017/S0143385702000214. |
[6] |
B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371.
doi: 10.1215/S0012-7094-06-13225-8. |
[7] |
K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083.
doi: 10.1017/S0143385704000112. |
[8] |
K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions,, Ergodic Theory Dynam. Systems, 26 (2006), 719.
doi: 10.1017/S0143385706000046. |
[9] |
K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions,, Discrete Contin. Dynam. Syst., 19 (2007), 691.
doi: 10.3934/dcds.2007.19.691. |
[10] |
K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. London Math. Soc., 99 (2009), 658.
doi: 10.1112/plms/pdp013. |
[11] |
K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., (). Google Scholar |
[12] |
K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., (). Google Scholar |
[13] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems,, (Proc. Conf., (1977), 127.
|
[14] |
B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum,, Israel J. Math., 76 (1991), 289.
doi: 10.1007/BF02773866. |
[15] |
A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations,, J. London Math. Soc. (2), 59 (1999), 171.
doi: 10.1112/S0024610799006961. |
[16] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, In collaboration with E. A. Robinson, (1999), 107.
|
[17] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, (1995).
|
[18] |
K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle,, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1.
|
[19] |
Y. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).
|
[20] |
A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus,, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515.
|
[21] |
A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces,, (Russian) Mat. Sb., 96 (1975), 471.
|
[22] |
A. V. Kochergin, Non-degenerated saddles and absence of mixing,, (Russian) Mat. Zametki, 19 (1976), 453.
|
[23] |
A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function,, (Russian) Mat. Sb., 193 (2002), 51.
|
[24] |
A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II,, (Russian) Mat. Sb., 195 (2004), 15.
|
[25] |
A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces,, Dynamics, (2007), 129.
|
[26] |
M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle,, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), 29.
|
[27] |
J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik,, (German), 33 (1932), 587.
doi: 10.2307/1968537. |
[28] |
M. Ratner, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277.
doi: 10.2307/2007030. |
[29] |
V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions,, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85.
|
[30] |
J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory,, Ergodic theory and its connections with harmonic analysis (Alexandria, (1993), 207.
|
[31] |
K. Schmidt, Dispersing cocycles and mixing flows under functions,, Fund. Math., 173 (2002), 191.
doi: 10.4064/fm173-2-6. |
[32] |
D. Witte, Rigidity of some translations on homogeneous spaces,, Invent. Math., 81 (1985), 1.
doi: 10.1007/BF01388769. |
[33] |
J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle,, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89.
|
show all references
References:
[1] |
J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations,", Cambridge Univ. Press, (2003).
doi: 10.1017/CBO9780511546563. |
[2] |
V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods,, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1.
|
[3] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory,", Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1982).
|
[4] |
B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus,, Bull. Soc. Math. France, 129 (2001), 487.
|
[5] |
B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.
doi: 10.1017/S0143385702000214. |
[6] |
B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371.
doi: 10.1215/S0012-7094-06-13225-8. |
[7] |
K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083.
doi: 10.1017/S0143385704000112. |
[8] |
K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions,, Ergodic Theory Dynam. Systems, 26 (2006), 719.
doi: 10.1017/S0143385706000046. |
[9] |
K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions,, Discrete Contin. Dynam. Syst., 19 (2007), 691.
doi: 10.3934/dcds.2007.19.691. |
[10] |
K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. London Math. Soc., 99 (2009), 658.
doi: 10.1112/plms/pdp013. |
[11] |
K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., (). Google Scholar |
[12] |
K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., (). Google Scholar |
[13] |
H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems,, (Proc. Conf., (1977), 127.
|
[14] |
B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum,, Israel J. Math., 76 (1991), 289.
doi: 10.1007/BF02773866. |
[15] |
A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations,, J. London Math. Soc. (2), 59 (1999), 171.
doi: 10.1112/S0024610799006961. |
[16] |
A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, In collaboration with E. A. Robinson, (1999), 107.
|
[17] |
A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, (1995).
|
[18] |
K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle,, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1.
|
[19] |
Y. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).
|
[20] |
A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus,, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515.
|
[21] |
A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces,, (Russian) Mat. Sb., 96 (1975), 471.
|
[22] |
A. V. Kochergin, Non-degenerated saddles and absence of mixing,, (Russian) Mat. Zametki, 19 (1976), 453.
|
[23] |
A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function,, (Russian) Mat. Sb., 193 (2002), 51.
|
[24] |
A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II,, (Russian) Mat. Sb., 195 (2004), 15.
|
[25] |
A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces,, Dynamics, (2007), 129.
|
[26] |
M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle,, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), 29.
|
[27] |
J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik,, (German), 33 (1932), 587.
doi: 10.2307/1968537. |
[28] |
M. Ratner, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277.
doi: 10.2307/2007030. |
[29] |
V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions,, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85.
|
[30] |
J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory,, Ergodic theory and its connections with harmonic analysis (Alexandria, (1993), 207.
|
[31] |
K. Schmidt, Dispersing cocycles and mixing flows under functions,, Fund. Math., 173 (2002), 191.
doi: 10.4064/fm173-2-6. |
[32] |
D. Witte, Rigidity of some translations on homogeneous spaces,, Invent. Math., 81 (1985), 1.
doi: 10.1007/BF01388769. |
[33] |
J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle,, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89.
|
[1] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[2] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[3] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[4] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[5] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[6] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[7] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[8] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[9] |
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Special issue dedicated to Professor David Paul Mason. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : iii-iv. doi: 10.3934/dcdss.2020416 |
[10] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[11] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[12] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[13] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[14] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[15] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[16] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[17] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]