October  2010, 4(4): 715-732. doi: 10.3934/jmd.2010.4.715

Infinite translation surfaces with infinitely generated Veech groups

1. 

LATP, case cour A, Faculté des sciences Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 20, France

2. 

Institute for Algebra and Geometry, University of Karlsruhe, 76128 Karlsruhe, Germany

Received  June 2010 Revised  September 2010 Published  January 2011

We study infinite translation surfaces which are $\ZZ$-covers of finite square-tiled surfaces obtained by a certain two-slit cut and paste construction. We show that if the finite translation surface has a one-cylinder decomposition in some direction, then the Veech group of the infinite translation surface is either a lattice or an infinitely generated group of the first kind. The square-tiled surfaces of genus two with one zero provide examples for finite translation surfaces that fulfill the prerequisites of the theorem.
Citation: Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715
References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).   Google Scholar

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319.  doi: 10.1007/BF01673500.  Google Scholar

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.   Google Scholar

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.  doi: 10.1215/S0012-7094-00-10321-3.  Google Scholar

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.   Google Scholar

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007).   Google Scholar

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009).   Google Scholar

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281.  doi: 10.1007/BF02777365.  Google Scholar

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.   Google Scholar

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.  doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008).   Google Scholar

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.  doi: 10.1007/s00222-003-0303-x.  Google Scholar

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007).   Google Scholar

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191.  doi: 10.1007/BF02392964.  Google Scholar

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., ().   Google Scholar

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005).   Google Scholar

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.   Google Scholar

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.   Google Scholar

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.   Google Scholar

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.   Google Scholar

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009).   Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553.  doi: 10.1007/BF01388890.  Google Scholar

show all references

References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).   Google Scholar

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319.  doi: 10.1007/BF01673500.  Google Scholar

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.   Google Scholar

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.  doi: 10.1215/S0012-7094-00-10321-3.  Google Scholar

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.   Google Scholar

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007).   Google Scholar

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009).   Google Scholar

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281.  doi: 10.1007/BF02777365.  Google Scholar

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.   Google Scholar

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.  doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008).   Google Scholar

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.  doi: 10.1007/s00222-003-0303-x.  Google Scholar

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007).   Google Scholar

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191.  doi: 10.1007/BF02392964.  Google Scholar

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., ().   Google Scholar

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005).   Google Scholar

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.   Google Scholar

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.   Google Scholar

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.   Google Scholar

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.   Google Scholar

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009).   Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553.  doi: 10.1007/BF01388890.  Google Scholar

[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[4]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]