-
Previous Article
Survival of infinitely many critical points for the Rabinowitz action functional
- JMD Home
- This Issue
-
Next Article
Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory
Infinite translation surfaces with infinitely generated Veech groups
1. | LATP, case cour A, Faculté des sciences Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 20, France |
2. | Institute for Algebra and Geometry, University of Karlsruhe, 76128 Karlsruhe, Germany |
References:
[1] |
J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).
|
[2] |
R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319.
doi: 10.1007/BF01673500. |
[3] |
R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.
|
[4] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.
|
[6] |
W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007). Google Scholar |
[7] |
W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009). Google Scholar |
[8] |
P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281.
doi: 10.1007/BF02777365. |
[9] |
P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.
|
[10] |
P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.
doi: 10.1215/S0012-7094-04-12312-8. |
[11] |
P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008). Google Scholar |
[12] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.
doi: 10.1007/s00222-003-0303-x. |
[13] |
S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007). Google Scholar |
[14] |
C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191.
doi: 10.1007/BF02392964. |
[15] |
P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., (). Google Scholar |
[16] |
G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005). Google Scholar |
[17] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.
|
[18] |
G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.
|
[19] |
G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.
|
[20] |
F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.
|
[21] |
F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009). Google Scholar |
[22] |
W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553.
doi: 10.1007/BF01388890. |
show all references
References:
[1] |
J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).
|
[2] |
R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319.
doi: 10.1007/BF01673500. |
[3] |
R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.
|
[4] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.
|
[6] |
W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007). Google Scholar |
[7] |
W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009). Google Scholar |
[8] |
P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281.
doi: 10.1007/BF02777365. |
[9] |
P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.
|
[10] |
P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.
doi: 10.1215/S0012-7094-04-12312-8. |
[11] |
P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008). Google Scholar |
[12] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631.
doi: 10.1007/s00222-003-0303-x. |
[13] |
S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007). Google Scholar |
[14] |
C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191.
doi: 10.1007/BF02392964. |
[15] |
P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., (). Google Scholar |
[16] |
G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005). Google Scholar |
[17] |
G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.
|
[18] |
G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.
|
[19] |
G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.
|
[20] |
F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.
|
[21] |
F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009). Google Scholar |
[22] |
W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553.
doi: 10.1007/BF01388890. |
[1] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[2] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[3] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[4] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[5] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]