October  2010, 4(4): 715-732. doi: 10.3934/jmd.2010.4.715

Infinite translation surfaces with infinitely generated Veech groups

1. 

LATP, case cour A, Faculté des sciences Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 20, France

2. 

Institute for Algebra and Geometry, University of Karlsruhe, 76128 Karlsruhe, Germany

Received  June 2010 Revised  September 2010 Published  January 2011

We study infinite translation surfaces which are $\ZZ$-covers of finite square-tiled surfaces obtained by a certain two-slit cut and paste construction. We show that if the finite translation surface has a one-cylinder decomposition in some direction, then the Veech group of the infinite translation surface is either a lattice or an infinitely generated group of the first kind. The square-tiled surfaces of genus two with one zero provide examples for finite translation surfaces that fulfill the prerequisites of the theorem.
Citation: Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715
References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009). Google Scholar

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319. doi: 10.1007/BF01673500. Google Scholar

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123. Google Scholar

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3. Google Scholar

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133. Google Scholar

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007). Google Scholar

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009). Google Scholar

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365. Google Scholar

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47. Google Scholar

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49. doi: 10.1215/S0012-7094-04-12312-8. Google Scholar

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008). Google Scholar

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x. Google Scholar

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007). Google Scholar

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191. doi: 10.1007/BF02392964. Google Scholar

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., (). Google Scholar

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005). Google Scholar

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459. Google Scholar

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193. Google Scholar

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31. Google Scholar

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255. Google Scholar

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009). Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890. Google Scholar

show all references

References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009). Google Scholar

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319. doi: 10.1007/BF01673500. Google Scholar

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123. Google Scholar

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3. Google Scholar

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133. Google Scholar

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007). Google Scholar

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009). Google Scholar

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365. Google Scholar

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47. Google Scholar

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49. doi: 10.1215/S0012-7094-04-12312-8. Google Scholar

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008). Google Scholar

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x. Google Scholar

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007). Google Scholar

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191. doi: 10.1007/BF02392964. Google Scholar

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., (). Google Scholar

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005). Google Scholar

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459. Google Scholar

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193. Google Scholar

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31. Google Scholar

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255. Google Scholar

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009). Google Scholar

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890. Google Scholar

[1]

Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005

[2]

Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055

[3]

Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002

[4]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[5]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[6]

Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004

[7]

Pierre Arnoux, Thomas A. Schmidt. Veech surfaces with nonperiodic directions in the trace field. Journal of Modern Dynamics, 2009, 3 (4) : 611-629. doi: 10.3934/jmd.2009.3.611

[8]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[9]

Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367

[10]

Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945

[11]

Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817

[12]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[13]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[14]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[15]

Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167

[16]

The Editors. William A. Veech's publications. Journal of Modern Dynamics, 2019, 14: ⅰ-ⅳ. doi: 10.3934/jmd.2019i

[17]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[18]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[19]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

[20]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]