August 2017, 11: 189-217. doi: 10.3934/jmd.2017009

Effective equidistribution of circles in the limit sets of Kleinian groups

Mathematics Department, Yale University, New Haven, CT 06520, USA

Received  November 25, 2015 Revised  October 22, 2016 Published  February 2017

Consider a general circle packing $\mathscr{P}$ in the complex plane $\mathbb{C}$ invariant under a Kleinian group $\Gamma$. When $\Gamma$ is convex cocompact or its critical exponent is greater than 1, we obtain an effective equidistribution for small circles in $\mathscr{P}$ intersecting any bounded connected regular set in $\mathbb{C}$; this provides an effective version of an earlier work of Oh-Shah [12]. In view of the recent result of McMullen-Mohammadi-Oh [6], our effective circle counting theorem applies to the circles contained in the limit set of a convex cocompact but non-cocompact Kleinian group whose limit set contains at least one circle. Moreover, consider the circle packing $\mathscr{P}(\mathscr{T})$ of the ideal triangle attained by filling in largest inner circles. We give an effective estimate to the number of disks whose hyperbolic areas are greater than $t$, as $t\to0$, effectivizing the work of Oh [10].

Citation: Wenyu Pan. Effective equidistribution of circles in the limit sets of Kleinian groups. Journal of Modern Dynamics, 2017, 11: 189-217. doi: 10.3934/jmd.2017009
References:
[1]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39. doi: 10.1007/BF02392718.

[2]

R. D. Canary and E. Taylor, Kleinian groups with small limit sets, Duke Math J., 73 (1994), 371-381. doi: 10.1215/S0012-7094-94-07316-X.

[3]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. With an appendix by Oh and Nimish Shah, J. Amer. Math. Soc., 24 (2011), 603-648. doi: 10.1090/S0894-0347-2011-00691-7.

[4]

M. Lee and H. Oh, Effective count for Apollonian circle packings and closed horospheres, Geom. Funct. Anal., 23 (2013), 580-621. doi: 10.1007/s00039-013-0217-8.

[5]

C. McMullen, Hausdorff dimension and conformal dynamics. Ⅲ. Computation of dimension, Amer. J. Math., 120 (1998), 691-721. doi: 10.1353/ajm.1998.0031.

[6]

C. McMullen, A. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds, H. Invent. Math. , (2016). Available from: http://gauss.math.yale.edu/~ho2/. doi: 10.1007/s00222-016-0711-3.

[7]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc.(JEMS), 17 (2015), 837-897. doi: 10.4171/JEMS/520.

[8]

A. Mohammadi and H. Oh, Ergodicity of unipotent flows and Kleinian groups, J. Amer. Math. Soc., 28 (2015), 531-577. doi: 10.1090/S0894-0347-2014-00811-0.

[9] D. MumfordC. Series and D. Wright, Indra's Pearls. The Vision of Felix Klein, Cambridge University Press, New York, 2002. doi: 10.1017/CBO9781107050051.024.
[10]

H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, in Thin Groups and Superstrong Approximation (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press., Cambridge, 2014.

[11]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyper bolic groups, J. Amer. Math. Soc., 26 (2013), 511-562. doi: 10.1090/S0894-0347-2012-00749-8.

[12]

H. Oh and N. Shah, The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math., 187 (2012), 1-35. doi: 10.1007/s00222-011-0326-7.

[13]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, To appear in Ergodic Theory and Dynamical Systems, arXiv: 1305.1332. doi: 10.1017/etds.2015.77.

[14]

P. Vesselin and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys., 310 (2012), 675-704. doi: 10.1007/s00220-012-1419-x.

[15]

B. Stratmann and M. Urbański, Diophantine extremality of the Patterson measure, Math. Proc. Cambridge Philos. Soc., 140 (2006), 297-304. doi: 10.1017/S0305004105009114.

[16]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements. new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220. doi: 10.1112/plms/s3-71.1.197.

[17]

D. Sullivan, Entropy, Hausdorff measures old and new. and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277. doi: 10.1007/BF02392379.

[18]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120. doi: 10.1088/0951-7715/24/4/005.

[19]

I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, Int. Math. Res. Not. IMRN 2014,3217–3262.

show all references

References:
[1]

C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math., 179 (1997), 1-39. doi: 10.1007/BF02392718.

[2]

R. D. Canary and E. Taylor, Kleinian groups with small limit sets, Duke Math J., 73 (1994), 371-381. doi: 10.1215/S0012-7094-94-07316-X.

[3]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. With an appendix by Oh and Nimish Shah, J. Amer. Math. Soc., 24 (2011), 603-648. doi: 10.1090/S0894-0347-2011-00691-7.

[4]

M. Lee and H. Oh, Effective count for Apollonian circle packings and closed horospheres, Geom. Funct. Anal., 23 (2013), 580-621. doi: 10.1007/s00039-013-0217-8.

[5]

C. McMullen, Hausdorff dimension and conformal dynamics. Ⅲ. Computation of dimension, Amer. J. Math., 120 (1998), 691-721. doi: 10.1353/ajm.1998.0031.

[6]

C. McMullen, A. Mohammadi and H. Oh, Geodesic planes in hyperbolic 3-manifolds, H. Invent. Math. , (2016). Available from: http://gauss.math.yale.edu/~ho2/. doi: 10.1007/s00222-016-0711-3.

[7]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc.(JEMS), 17 (2015), 837-897. doi: 10.4171/JEMS/520.

[8]

A. Mohammadi and H. Oh, Ergodicity of unipotent flows and Kleinian groups, J. Amer. Math. Soc., 28 (2015), 531-577. doi: 10.1090/S0894-0347-2014-00811-0.

[9] D. MumfordC. Series and D. Wright, Indra's Pearls. The Vision of Felix Klein, Cambridge University Press, New York, 2002. doi: 10.1017/CBO9781107050051.024.
[10]

H. Oh, Harmonic analysis, ergodic theory and counting for thin groups, in Thin Groups and Superstrong Approximation (eds. E. Breulliard and H. Oh), Math. Sci. Res. Inst. Publ., 61, Cambridge Univ. Press., Cambridge, 2014.

[11]

H. Oh and N. Shah, Equidistribution and counting for orbits of geometrically finite hyper bolic groups, J. Amer. Math. Soc., 26 (2013), 511-562. doi: 10.1090/S0894-0347-2012-00749-8.

[12]

H. Oh and N. Shah, The asymptotic distribution of circles in the orbits of Kleinian groups, Invent. Math., 187 (2012), 1-35. doi: 10.1007/s00222-011-0326-7.

[13]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature, To appear in Ergodic Theory and Dynamical Systems, arXiv: 1305.1332. doi: 10.1017/etds.2015.77.

[14]

P. Vesselin and L. Stoyanov, Distribution of periods of closed trajectories in exponentially shrinking intervals, Comm. Math. Phys., 310 (2012), 675-704. doi: 10.1007/s00220-012-1419-x.

[15]

B. Stratmann and M. Urbański, Diophantine extremality of the Patterson measure, Math. Proc. Cambridge Philos. Soc., 140 (2006), 297-304. doi: 10.1017/S0305004105009114.

[16]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements. new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220. doi: 10.1112/plms/s3-71.1.197.

[17]

D. Sullivan, Entropy, Hausdorff measures old and new. and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), 259-277. doi: 10.1007/BF02392379.

[18]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120. doi: 10.1088/0951-7715/24/4/005.

[19]

I. Vinogradov, Effective bisector estimate with applications to Apollonian circle packings, Int. Math. Res. Not. IMRN 2014,3217–3262.

Figure 1.  Circle packing intersecting bounded region (background pictures are reproduced from Indra's Pearls: The Vision of Felix Klein, by D. Mumford, C. Series and D. Wright, copyright Cambridge University Press 2002)
Figure 2.  Circle packing in ideal hyperbolic triangle
Figure 3.  Apollonian circle packing $\mathscr{P}$ and generators of $\mathcal{A}$
[1]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[2]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[3]

A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463

[4]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[5]

Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323

[6]

Shinji Imahori, Yoshiyuki Karuno, Kenju Tateishi. Pseudo-polynomial time algorithms for combinatorial food mixture packing problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1057-1073. doi: 10.3934/jimo.2016.12.1057

[7]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018160

[8]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[9]

Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719

[10]

Heather Hannah, A. Alexandrou Himonas, Gerson Petronilho. Anisotropic Gevrey regularity for mKdV on the circle. Conference Publications, 2011, 2011 (Special) : 634-642. doi: 10.3934/proc.2011.2011.634

[11]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[12]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[13]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[14]

Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487

[15]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018164

[16]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[17]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[18]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[19]

Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167

[20]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (15)
  • HTML views (70)
  • Cited by (1)

Other articles
by authors

[Back to Top]