-
Previous Article
Values of random polynomials at integer points
- JMD Home
- This Volume
- Next Article
A quantitative Oppenheim theorem for generic ternary quadratic forms
1. | School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India |
2. | Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA |
We prove a quantitative version of Oppenheim's conjecture for generic ternary indefinite quadratic forms. Our results are inspired by and analogous to recent results for diagonal quadratic forms due to Bourgain [
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear. Google Scholar |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear. Google Scholar |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
show all references
References:
[1] |
J. S. Athreya and G. A. Margulis,
Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378.
doi: 10.3934/jmd.2009.3.359. |
[2] |
J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear. Google Scholar |
[3] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[4] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.
|
[5] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.
doi: 10.2307/120984. |
[6] |
A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear. Google Scholar |
[7] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018. Google Scholar |
[8] |
A. Ghosh and D. Kelmer,
Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.
doi: 10.1112/blms.12023. |
[9] |
A. Gorodnik and A. Nevo,
The Ergodic Theory of Lattice Subgroups,
Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010. |
[10] |
E. Lindenstrauss and G. Margulis,
Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499.
doi: 10.1007/s11856-014-1110-3. |
[11] |
G. A. Margulis,
Discrete subgroups and ergodic theory,
in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398. |
[12] |
H. Oh,
Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380.
doi: 10.24033/bsmf.2329. |
[13] |
C. A. Rogers,
Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.
doi: 10.1007/BF02392493. |
[14] |
P. Sarnak,
Values at integers of binary quadratic forms,
in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203. |
[1] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[2] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[3] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[4] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[7] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[8] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[9] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[10] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[11] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[12] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[13] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[14] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[15] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[16] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[17] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]