2018, 12: 55-122. doi: 10.3934/jmd.2018004

Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

2. 

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, PR China

3. 

School of Mathematics, University of Bristol, Howard House, Queens Ave, BS8 1SD, Bristol, United Kingdom

Received  June 13, 2016 Revised  November 06, 2017 Published  March 2018

Fund Project: KF: Research partially supported by the National Science Centre (Poland) grant 2014/13/ B/ST1/03153.
RS: Supported by NSFC (11201388), NSFC (11271278), ERC starter grant DLGAPS 279893.
CU: Supported by the ERC, via the Starting Grant ChaParDyn, as well as by the Leverhulme Trust via a Leverhulme Prize and by the Royal Society and the Wolfson Foundation via a Royal Society Wolfson Research Merit Award. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 335989.

In this paper we prove results on Birkhoff and Oseledets genericity along certain curves in the space of affine lattices and in moduli spaces of translation surfaces. In the space of affine lattices $ASL_2( \mathbb{R})/ASL_2( \mathbb{Z})$, we prove that almost every point on a curve with some non-degeneracy assumptions is Birkhoff generic for the geodesic flow. This implies almost everywhere genericity for some curves in the locus of branched covers of the torus inside the stratum $\mathscr{H}(1,1)$ of translation surfaces. For these curves we also prove that almost every point is Oseledets generic for the Kontsevitch-Zorich cocycle, generalizing a recent result by Chaika and Eskin. As applications, we first consider a class of pseudo-integrable billiards, billiards in ellipses with barriers, and prove that for almost every parameter, the billiard flow is uniquely ergodic within the region of phase space in which it is trapped. We then consider any periodic array of Eaton retroreflector lenses, placed on vertices of a lattice, and prove that in almost every direction light rays are each confined to a band of finite width. Finally, a result on the gap distribution of fractional parts of the sequence of square roots of positive integers is also obtained.

Citation: Krzysztof Frączek, Ronggang Shi, Corinna Ulcigrai. Genericity on curves and applications: pseudo-integrable billiards, Eaton lenses and gap distributions. Journal of Modern Dynamics, 2018, 12: 55-122. doi: 10.3934/jmd.2018004
References:
[1]

A. AvilaA. Eskin and M. Möller, Symplectic and isometric SL(2, R)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., 732 (2017), 1-20.   Google Scholar

[2]

A. AvilaS. Gouëzel and J.-Ch. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.   Google Scholar

[3]

A. Avila and P. Hubert, Recurrence for the wind-tree model, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2018). inéaire, (2018). doi: 10.1016/j.anihpc.2017.11.006.  Google Scholar

[4]

M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.  doi: 10.2140/gt.2007.11.1887.  Google Scholar

[5]

T. Browning and I. Vinogradov, Effective Ratner theorem for $SL(2, \mathbb R) <\ltimes \mathbb R^2$ and gaps in $\sqrt n$ modulo $1$, J. Lond. Math. oc. (2), 94 (2016), 61-84.  doi: 10.1112/jlms/jdw025.  Google Scholar

[6]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (Ⅱ), J. Amer. Math. Soc., 26 (2013), 659-734.  doi: 10.1090/S0894-0347-2013-00760-2.  Google Scholar

[7]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., 9 (2015), 1-23.  doi: 10.3934/jmd.2015.9.1.  Google Scholar

[8]

V. DelecroixP. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 1085-1110.  doi: 10.24033/asens.2234.  Google Scholar

[9]

V. Dragović and M. Radnović, Pseudo-integrable billiards and arithmetic dynamics, J. Mod. Dyn., 8 (2014), 109-132.  doi: 10.3934/jmd.2014.8.109.  Google Scholar

[10]

M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010,155–241.  Google Scholar

[11]

N. D. Elkies and C. T. McMullen, Gaps in $\sqrt{n}$ mod $1$ and ergodic theory, Duke Math. J., 123 (2004), 95-139.  doi: 10.1215/S0012-7094-04-12314-0.  Google Scholar

[12]

A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich-Zorich cocycle, arXiv: 1702.02074. Google Scholar

[13]

A. EskinG. A. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[14]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL_2(\mathbb{R})$ action on moduli space, arXiv: 1302.3320. Google Scholar

[15]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution and orbit closures for the $SL(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.   Google Scholar

[16]

S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.  doi: 10.1007/s00222-015-0643-3.  Google Scholar

[17]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.  doi: 10.2307/3062150.  Google Scholar

[18]

R. Fox and R. Kershner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150.  doi: 10.1215/S0012-7094-36-00213-2.  Google Scholar

[19]

K. Frączek and P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models, Math. Nachr., to appear, arXiv: 1506.05884. Google Scholar

[20]

K. Frączek and M. Schmoll, Directional localization of light rays in a periodic array of retro-reflector lenses, Nonlinearity, 27 (2014), 1689-1707.  doi: 10.1088/0951-7715/27/7/1689.  Google Scholar

[21]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbb{Z}$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298.  doi: 10.1007/s00222-013-0482-z.  Google Scholar

[22]

I. Ya. Goldsheid and G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71.   Google Scholar

[23]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 767-802.  doi: 10.1017/S0143385703000440.  Google Scholar

[24]

J. H. Hannay and T. M. Haeusserab, Retroreflection by refraction, J. Mod. Opt., 40 (1993), 1437-1442.  doi: 10.1080/09500349314551501.  Google Scholar

[25]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons, (Russian), Mat.Zametki, 18 (1975), 291-300.   Google Scholar

[26]

S. KerckhoffH. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.  doi: 10.2307/1971280.  Google Scholar

[27]

D. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[28]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.  doi: 10.1007/s00208-016-1404-3.  Google Scholar

[29]

R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.  doi: 10.1307/mmj/1029003816.  Google Scholar

[30]

H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.   Google Scholar

[31]

Y. Minsky and B. Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math., 552 (2002), 131-177.   Google Scholar

[32]

Y. Minsky and B. Weiss, Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 245-284.  doi: 10.24033/asens.2214.  Google Scholar

[33]

S. Mozes, Epimorphic subgroups and invariant measures, Ergodic Theory Dynam. Systems, 15 (1995), 1207-1210.  doi: 10.1017/S0143385700009871.  Google Scholar

[34]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[35]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 275-306.   Google Scholar

[36]

N. Shah, Equidistribution of expanding translates of curves and Dirichlet's theorem on diophantine approximation, Invent. Math, 177 (2009), 509-532.  doi: 10.1007/s00222-009-0186-6.  Google Scholar

[37]

N. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 251-279.  doi: 10.1215/00127094-2009-026.  Google Scholar

[38]

R. Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space, arXiv: 1405.2067. Google Scholar

[39]

R. Shi, Expanding cone and applications to homogeneous dynamics, arXiv: 1510.05256. Google Scholar

[40]

A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[41]

S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[42]

A. Zorich, Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, 17 (1997), 1477-1499.  doi: 10.1017/S0143385797086215.  Google Scholar

[43]

A. Zorich, How do the leaves of a closed 1-form wind around a surface?, Amer. Math. Soc. Transl. Ser. 2, 197 (1999), 135-178.   Google Scholar

show all references

References:
[1]

A. AvilaA. Eskin and M. Möller, Symplectic and isometric SL(2, R)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., 732 (2017), 1-20.   Google Scholar

[2]

A. AvilaS. Gouëzel and J.-Ch. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 143-211.   Google Scholar

[3]

A. Avila and P. Hubert, Recurrence for the wind-tree model, Ann. Inst. H. Poincaré Anal. Non Linéaire, (2018). inéaire, (2018). doi: 10.1016/j.anihpc.2017.11.006.  Google Scholar

[4]

M. Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol., 11 (2007), 1887-2073.  doi: 10.2140/gt.2007.11.1887.  Google Scholar

[5]

T. Browning and I. Vinogradov, Effective Ratner theorem for $SL(2, \mathbb R) <\ltimes \mathbb R^2$ and gaps in $\sqrt n$ modulo $1$, J. Lond. Math. oc. (2), 94 (2016), 61-84.  doi: 10.1112/jlms/jdw025.  Google Scholar

[6]

Y. Benoist and J.-F. Quint, Stationary measures and invariant subsets of homogeneous spaces (Ⅱ), J. Amer. Math. Soc., 26 (2013), 659-734.  doi: 10.1090/S0894-0347-2013-00760-2.  Google Scholar

[7]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn., 9 (2015), 1-23.  doi: 10.3934/jmd.2015.9.1.  Google Scholar

[8]

V. DelecroixP. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 1085-1110.  doi: 10.24033/asens.2234.  Google Scholar

[9]

V. Dragović and M. Radnović, Pseudo-integrable billiards and arithmetic dynamics, J. Mod. Dyn., 8 (2014), 109-132.  doi: 10.3934/jmd.2014.8.109.  Google Scholar

[10]

M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010,155–241.  Google Scholar

[11]

N. D. Elkies and C. T. McMullen, Gaps in $\sqrt{n}$ mod $1$ and ergodic theory, Duke Math. J., 123 (2004), 95-139.  doi: 10.1215/S0012-7094-04-12314-0.  Google Scholar

[12]

A. Eskin, S. Filip and A. Wright, The algebraic hull of the Kontsevich-Zorich cocycle, arXiv: 1702.02074. Google Scholar

[13]

A. EskinG. A. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[14]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL_2(\mathbb{R})$ action on moduli space, arXiv: 1302.3320. Google Scholar

[15]

A. EskinM. Mirzakhani and A. Mohammadi, Isolation, equidistribution and orbit closures for the $SL(2, \mathbb{R})$ action on moduli space, Ann. of Math. (2), 182 (2015), 673-721.   Google Scholar

[16]

S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.  doi: 10.1007/s00222-015-0643-3.  Google Scholar

[17]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), 155 (2002), 1-103.  doi: 10.2307/3062150.  Google Scholar

[18]

R. Fox and R. Kershner, Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J., 2 (1936), 147-150.  doi: 10.1215/S0012-7094-36-00213-2.  Google Scholar

[19]

K. Frączek and P. Hubert, Recurrence and non-ergodicity in generalized wind-tree models, Math. Nachr., to appear, arXiv: 1506.05884. Google Scholar

[20]

K. Frączek and M. Schmoll, Directional localization of light rays in a periodic array of retro-reflector lenses, Nonlinearity, 27 (2014), 1689-1707.  doi: 10.1088/0951-7715/27/7/1689.  Google Scholar

[21]

K. Frączek and C. Ulcigrai, Non-ergodic $\mathbb{Z}$-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298.  doi: 10.1007/s00222-013-0482-z.  Google Scholar

[22]

I. Ya. Goldsheid and G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian Math. Surveys, 44 (1989), 11-71.   Google Scholar

[23]

Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 767-802.  doi: 10.1017/S0143385703000440.  Google Scholar

[24]

J. H. Hannay and T. M. Haeusserab, Retroreflection by refraction, J. Mod. Opt., 40 (1993), 1437-1442.  doi: 10.1080/09500349314551501.  Google Scholar

[25]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons, (Russian), Mat.Zametki, 18 (1975), 291-300.   Google Scholar

[26]

S. KerckhoffH. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2), 124 (1986), 293-311.  doi: 10.2307/1971280.  Google Scholar

[27]

D. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[28]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.  doi: 10.1007/s00208-016-1404-3.  Google Scholar

[29]

R. Lyons, Strong laws of large numbers for weakly correlated random variables, Michigan Math. J., 35 (1988), 353-359.  doi: 10.1307/mmj/1029003816.  Google Scholar

[30]

H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.   Google Scholar

[31]

Y. Minsky and B. Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math., 552 (2002), 131-177.   Google Scholar

[32]

Y. Minsky and B. Weiss, Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 245-284.  doi: 10.24033/asens.2214.  Google Scholar

[33]

S. Mozes, Epimorphic subgroups and invariant measures, Ergodic Theory Dynam. Systems, 15 (1995), 1207-1210.  doi: 10.1017/S0143385700009871.  Google Scholar

[34]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607.  doi: 10.2307/2944357.  Google Scholar

[35]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 275-306.   Google Scholar

[36]

N. Shah, Equidistribution of expanding translates of curves and Dirichlet's theorem on diophantine approximation, Invent. Math, 177 (2009), 509-532.  doi: 10.1007/s00222-009-0186-6.  Google Scholar

[37]

N. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 251-279.  doi: 10.1215/00127094-2009-026.  Google Scholar

[38]

R. Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space, arXiv: 1405.2067. Google Scholar

[39]

R. Shi, Expanding cone and applications to homogeneous dynamics, arXiv: 1510.05256. Google Scholar

[40]

A. N. Starkov, Dynamical Systems on Homogeneous Spaces, Translations of Mathematical Monographs, 190, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[41]

S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[42]

A. Zorich, Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, 17 (1997), 1477-1499.  doi: 10.1017/S0143385797086215.  Google Scholar

[43]

A. Zorich, How do the leaves of a closed 1-form wind around a surface?, Amer. Math. Soc. Transl. Ser. 2, 197 (1999), 135-178.   Google Scholar

Figure 1.  The table $\mathscr{D}_{\lambda_0}$ and two types of invariant sets for the billiard flow
Figure 2.  Eaton lens and a parallel family of light rays
Figure 3.  The system of lenses $L(\Lambda,R)$
Figure 4.  A translation surface $(M, \omega)$ in the space $\mathscr{M}^{dc}$ of double covers of tori.
Figure 5.  The billiard flow on $\mathscr{S}_{\lambda}$ and the corresponding table $\mathscr{P}_\lambda$ for $\lambda_0 <\lambda< b$
Figure 6.  The billiard flow on $\mathscr{S}_{\lambda}$ and the corresponding table $\mathscr{P}_\lambda$ for $b<\lambda< a$
Figure 7.  The surface $({M}_\lambda, \omega_\lambda)$
Figure 8.  The system of lenses $F(\Lambda,R,\theta)$
Figure 9.  The surface $M(\Lambda,R)$
Figure 10.  The triangle $\triangle ABC$ and the line $x = 2sy+s^2$
[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[4]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[5]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[6]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[7]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[8]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[9]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[10]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[11]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[14]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[15]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[16]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[17]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[18]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[19]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[20]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (176)
  • HTML views (1341)
  • Cited by (1)

[Back to Top]