-
Previous Article
Möbius disjointness for interval exchange transformations on three intervals
- JMD Home
- This Volume
-
Next Article
Siegel–Veech transforms are in $ \boldsymbol{L^2} $(with an appendix by Jayadev S. Athreya and Rene Rühr)
The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces
1. | IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil |
2. | Centre de Mathématiques Laurent Schwartz, CNRS (UMR 7640), École Polytechnique, 91128 Palaiseau, France |
3. | Collège de France, 3 Rue d'Ulm, Paris, Cedex 05, France |
We describe the Kontsevich–Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich–Zorich monodromies of $ SU(p,q) $ type are realized by appropriate covering constructions.
References:
[1] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy–Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[2] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich–Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[3] |
S. Filip,
Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle, Duke Math. J., 166 (2017), 657-706.
doi: 10.1215/00127094-3715806. |
[4] |
E. Gutkin and C. Judge,
Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[6] |
C. Matheus, M. Möller and J.-C. Yoccoz,
A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202 (2015), 333-425.
doi: 10.1007/s00222-014-0565-5. |
[7] |
C. McMullen,
Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[8] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
show all references
References:
[1] |
A. Avila, C. Matheus and J.-C. Yoccoz,
Zorich conjecture for hyperelliptic Rauzy–Veech groups, Math. Ann., 370 (2018), 785-809.
doi: 10.1007/s00208-017-1568-5. |
[2] |
A. Avila and M. Viana,
Simplicity of Lyapunov spectra: Proof of the Zorich–Kontsevich conjecture, Acta Math., 198 (2007), 1-56.
doi: 10.1007/s11511-007-0012-1. |
[3] |
S. Filip,
Zero Lyapunov exponents and monodromy of the Kontsevich-Zorich cocycle, Duke Math. J., 166 (2017), 657-706.
doi: 10.1215/00127094-3715806. |
[4] |
E. Gutkin and C. Judge,
Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[5] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[6] |
C. Matheus, M. Möller and J.-C. Yoccoz,
A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces, Invent. Math., 202 (2015), 333-425.
doi: 10.1007/s00222-014-0565-5. |
[7] |
C. McMullen,
Braid groups and Hodge theory, Math. Ann., 355 (2013), 893-946.
doi: 10.1007/s00208-012-0804-2. |
[8] |
J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. |
[9] |
W. Veech,
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[1] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[2] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[3] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[4] |
Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324 |
[5] |
Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068 |
[6] |
Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229 |
[7] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[8] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[9] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[10] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[11] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[12] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[13] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[14] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[15] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[16] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[17] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[18] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[19] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[20] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
2019 Impact Factor: 0.465
Tools
Metrics
Other articles
by authors
[Back to Top]