2019, 14: 121-151. doi: 10.3934/jmd.2019005

Dilation surfaces and their Veech groups

1. 

Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Boite Courrier 7012, 8 Place Aurélie Nemours, 75013 Paris, France

2. 

Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

3. 

Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

To the memory of William Veech

Received  August 29, 2018 Revised  February 12, 2019 Published  March 2019

We introduce a class of objects which we call 'dilation surfaces'. These provide families of foliations on surfaces whose dynamics we are interested in. We present and analyze a couple of examples, and we define concepts related to these in order to motivate several questions and open problems. In particular we generalize the notion of Veech group to dilation surfaces, and we prove a structure result about these Veech groups.

Citation: Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005
References:
[1]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchanges, to appear in Ergodic Theory, 2018.Google Scholar

[2]

X. BressaudP. Hubert and A. Maass, Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergodic Theory Dynam. Systems, 30 (2010), 665-686. doi: 10.1017/S0143385709000418. Google Scholar

[3]

J. Bowman and S. Sanderson, Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, arXiv: 1806.04129, (June, 2018).Google Scholar

[4]

R. Camelier and C. Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems, 17 (1997), 1315-1338. doi: 10.1017/S0143385797097666. Google Scholar

[5]

E. Duryev and L. Monin, Twisted differentials, dilation surfaces and complex affine surfaces, in preparation, 2018.Google Scholar

[6]

W. M. Goldman, Geometric structures on manifolds and varieties of representations, in Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198. doi: 10.1090/conm/074/957518. Google Scholar

[7]

R. C. Gunning, Affine and projective structures on Riemann surfaces, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 225–244. Google Scholar

[8]

P. Hubert and T. A. Schmidt, Chapter 6 - An Introduction to Veech Surfaces, in Handbook of Dynamical Systems (ed. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501–526. doi: 10.1016/S1874-575X(06)80031-7. Google Scholar

[9]

G. Levitt, Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 32 (1982), 179-217. doi: 10.5802/aif.875. Google Scholar

[10]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. Soc. Math. France, 123 (1995), 493-516. doi: 10.24033/bsmf.2268. Google Scholar

[11]

R. Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc., 163 (1972), 261-275. doi: 10.1090/S0002-9947-1972-0288253-1. Google Scholar

[12]

R. Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc., 183 (1973), 37-58. doi: 10.1090/S0002-9947-1973-0325958-9. Google Scholar

[13]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), 100 (2010), 639-669. doi: 10.1112/plms/pdp037. Google Scholar

[14]

F. E. Prym, Zur Integration der gleichzeitigen Differentialgleichungen, J. Reine Angew. Math., 70 (1869), 354-362. doi: 10.1515/crll.1869.70.354. Google Scholar

[15] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Edited by S. Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997. Google Scholar
[16]

W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589-689. doi: 10.2307/2375075. Google Scholar

[17]

W. A. Veech, Delaunay partitions, Topology, 36 (1997), 1-28. doi: 10.1016/0040-9383(96)00002-X. Google Scholar

[18]

W. A. Veech, Informal notes on flat surfaces, Unpublished course notes, 2008.Google Scholar

[19]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42. doi: 10.1070/RM1996v051n05ABEH002993. Google Scholar

[20]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13. Google Scholar

show all references

References:
[1]

A. Boulanger, C. Fougeron and S. Ghazouani, Cascades in the dynamics of affine interval exchanges, to appear in Ergodic Theory, 2018.Google Scholar

[2]

X. BressaudP. Hubert and A. Maass, Persistence of wandering intervals in self-similar affine interval exchange transformations, Ergodic Theory Dynam. Systems, 30 (2010), 665-686. doi: 10.1017/S0143385709000418. Google Scholar

[3]

J. Bowman and S. Sanderson, Angels' staircases, Sturmian sequences, and trajectories on homothety surfaces, arXiv: 1806.04129, (June, 2018).Google Scholar

[4]

R. Camelier and C. Gutierrez, Affine interval exchange transformations with wandering intervals, Ergodic Theory Dynam. Systems, 17 (1997), 1315-1338. doi: 10.1017/S0143385797097666. Google Scholar

[5]

E. Duryev and L. Monin, Twisted differentials, dilation surfaces and complex affine surfaces, in preparation, 2018.Google Scholar

[6]

W. M. Goldman, Geometric structures on manifolds and varieties of representations, in Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198. doi: 10.1090/conm/074/957518. Google Scholar

[7]

R. C. Gunning, Affine and projective structures on Riemann surfaces, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981, 225–244. Google Scholar

[8]

P. Hubert and T. A. Schmidt, Chapter 6 - An Introduction to Veech Surfaces, in Handbook of Dynamical Systems (ed. B. Hasselblatt and A. Katok), Vol. 1B, Elsevier B. V., Amsterdam, 2006, 501–526. doi: 10.1016/S1874-575X(06)80031-7. Google Scholar

[9]

G. Levitt, Feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 32 (1982), 179-217. doi: 10.5802/aif.875. Google Scholar

[10]

I. Liousse, Dynamique générique des feuilletages transversalement affines des surfaces, Bull. Soc. Math. France, 123 (1995), 493-516. doi: 10.24033/bsmf.2268. Google Scholar

[11]

R. Mandelbaum, Branched structures on Riemann surfaces, Trans. Amer. Math. Soc., 163 (1972), 261-275. doi: 10.1090/S0002-9947-1972-0288253-1. Google Scholar

[12]

R. Mandelbaum, Branched structures and affine and projective bundles on Riemann surfaces, Trans. Amer. Math. Soc., 183 (1973), 37-58. doi: 10.1090/S0002-9947-1973-0325958-9. Google Scholar

[13]

S. MarmiP. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc. (3), 100 (2010), 639-669. doi: 10.1112/plms/pdp037. Google Scholar

[14]

F. E. Prym, Zur Integration der gleichzeitigen Differentialgleichungen, J. Reine Angew. Math., 70 (1869), 354-362. doi: 10.1515/crll.1869.70.354. Google Scholar

[15] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Edited by S. Levy, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997. Google Scholar
[16]

W. A. Veech, Flat surfaces, Amer. J. Math., 115 (1993), 589-689. doi: 10.2307/2375075. Google Scholar

[17]

W. A. Veech, Delaunay partitions, Topology, 36 (1997), 1-28. doi: 10.1016/0040-9383(96)00002-X. Google Scholar

[18]

W. A. Veech, Informal notes on flat surfaces, Unpublished course notes, 2008.Google Scholar

[19]

Ya. B. Vorobets, Plane structures and billiards in rational polygons: The Veech alternative, Uspekhi Mat. Nauk, 51 (1996), 3-42. doi: 10.1070/RM1996v051n05ABEH002993. Google Scholar

[20]

A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437–583. doi: 10.1007/978-3-540-31347-2_13. Google Scholar

Figure 1.  A translation surface of genus $ 2 $
Figure 2.  A 'dilation surface' of genus $ 2 $ and a leaf of its horizontal foliation
Figure 3.  A 'hyperbolic' closed leaf
Figure 5.  The Franco-Russian slit construction
Figure 4.  A Hopf torus and the basis of its homology
Figure 6.  The double-chamber surface
Figure 7.  Dilation cylinders of the double-chamber surface
Figure 8.  The disco surface $ \operatorname{D}_{a, b} $
Figure 9.  An alternative representation of the disco surface
Figure 10.  Cut-and-paste operation applied to the image of the double-chamber surface under the matrix $ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} $
Figure 11.  A ribbon graph with two vertices
Figure 12.  A cylinder decomposition of the surface of genus $ 2 $
Figure 13.  A dilation torus, which is not a Hopf torus
Figure 14.  A dilation surface with a non-discrete set of holonomy vectors of saddle connections starting at the black point
Figure 15.  An angular section in which all leaves are hyperbolic
Figure 16.  Topological setting of the triangulation
[1]

Karol Mikula, Mariana Remešíková, Peter Novysedlák. Truss structure design using a length-oriented surface remeshing technique. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 933-951. doi: 10.3934/dcdss.2015.8.933

[2]

John Franks, Michael Handel. Some virtually abelian subgroups of the group of analytic symplectic diffeomorphisms of a surface. Journal of Modern Dynamics, 2013, 7 (3) : 369-394. doi: 10.3934/jmd.2013.7.369

[3]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[4]

Lok Ming Lui, Chengfeng Wen, Xianfeng Gu. A conformal approach for surface inpainting. Inverse Problems & Imaging, 2013, 7 (3) : 863-884. doi: 10.3934/ipi.2013.7.863

[5]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[6]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[7]

Erica Clay, Boris Hasselblatt, Enrique Pujals. Desingularization of surface maps. Electronic Research Announcements, 2017, 24: 1-9. doi: 10.3934/era.2017.24.001

[8]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[9]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems & Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[10]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure & Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[11]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[12]

Kazuo Aoki, Pierre Charrier, Pierre Degond. A hierarchy of models related to nanoflows and surface diffusion. Kinetic & Related Models, 2011, 4 (1) : 53-85. doi: 10.3934/krm.2011.4.53

[13]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[14]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[15]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[16]

Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711

[17]

E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M. Bursik, A. Webb. A model of granular flows over an erodible surface. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 589-599. doi: 10.3934/dcdsb.2003.3.589

[18]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[19]

Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353

[20]

Alfonso Artigue. Robustly N-expansive surface diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2367-2376. doi: 10.3934/dcds.2016.36.2367

2018 Impact Factor: 0.295

Metrics

  • PDF downloads (28)
  • HTML views (313)
  • Cited by (0)

[Back to Top]