2010, 3(1): 17-34. doi: 10.3934/krm.2010.3.17

Flame structure from a kinetic model for chemical reactions

1. 

Dipartimento di Matematica, Università di Parma, Viale G.P. Usberti 53/A, I-43100 Parma

2. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43100 Parma

3. 

Dipartimento di Matematica, Universitá di Parma, V.le G.P. Usberti 53/A, 43100 Parma, Italy

Received  September 2009 Revised  November 2009 Published  January 2010

Steady one-dimensional flame structure is investigated in a binary mixture made up by two components of the same chemical species undergoing binary irreversible exothermic reactive encounters. A kinetic model at the Boltzmann level, accounting for chemical transitions as well as for mechanical collisions, is proposed and its main features are analyzed. In the case of slow chemical reactions and collision dominated regime, the model is the starting point for a consistent derivation, via suitable asymptotic expansion of Chapman-Enskog type, of reactive Navier-Stokes equations at the fluid-dynamic scale. The resulting set of ordinary differential equations is investigated in the frame of the qualitative theory of dynamical systems, and numerical results are presented and briefly commented on for illustrative purposes.
Citation: Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic & Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17
[1]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[2]

Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35

[3]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[4]

Fiammetta Conforto, Maria Groppi, Roberto Monaco, Giampiero Spiga. Kinetic approach to deflagration processes in a recombination reaction. Kinetic & Related Models, 2011, 4 (1) : 259-276. doi: 10.3934/krm.2011.4.259

[5]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[6]

Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers . Communications on Pure & Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889

[7]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[8]

Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks & Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755

[9]

Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743

[10]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[11]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[12]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[13]

Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic & Related Models, 2010, 3 (4) : 529-644. doi: 10.3934/krm.2010.3.529

[14]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[15]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[16]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[17]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic & Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[18]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[19]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[20]

Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic & Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]