June  2010, 3(2): 353-372. doi: 10.3934/krm.2010.3.353

Fluid modeling for the Knudsen compressor: Case of polyatomic gases

1. 

Department of Mechanical Engineering and Science and Advanced Research Institute of Fluid Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan, Japan

2. 

Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501

Received  October 2009 Revised  October 2009 Published  May 2010

A fluid-dynamic system describing the behavior of a polyatomic gas in a Knudsen compressor, based on a periodic arrangement of narrower and wider two-dimensional channels and on a periodic saw-tooth temperature distribution, is derived, using the polyatomic version of the ellipsoidal statistical (ES) model of the Boltzmann equation, under the assumption that the channel width is much smaller than the length of a unit of the compressor (narrow channel approximation). The difference from the corresponding fluid-dynamic system for a monatomic gas is shown to be confined in the transport coefficients occurring in the fluid-dynamic equation. It is also shown that these coefficients in the present polyatomic-gas case are readily obtained by a simple conversion from the corresponding coefficients for the BGK model for a monatomic gas. Some numerical simulations based on the fluid-dynamic model are carried out, the results of which show that the properties of the Knudsen pump are little affected by the internal structure of a molecule.
Citation: Shigeru Takata, Hitoshi Funagane, Kazuo Aoki. Fluid modeling for the Knudsen compressor: Case of polyatomic gases. Kinetic & Related Models, 2010, 3 (2) : 353-372. doi: 10.3934/krm.2010.3.353
[1]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

[2]

Jacek Polewczak, Ana Jacinta Soares. On modified simple reacting spheres kinetic model for chemically reactive gases. Kinetic & Related Models, 2017, 10 (2) : 513-539. doi: 10.3934/krm.2017020

[3]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[4]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[7]

Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319

[8]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[9]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[10]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[11]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[12]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[13]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[14]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[15]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[16]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[17]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[18]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[19]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[20]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]