
Previous Article
$L^1$ averaging lemma for transport equations with Lipschitz force fields
 KRM Home
 This Issue

Next Article
1D VlasovPoisson equations with electron sheet initial data
Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity
1.  Institute of Applied Mathematics, AMSS and Hua LooKeng Key Laboratory of Mathematics, Academia Sinica, Beijing 100190 
2.  Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong 
References:
show all references
References:
[1] 
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible NavierStokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 19071926. doi: 10.3934/cpaa.2013.12.1907 
[2] 
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible NavierStokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469514. doi: 10.3934/krm.2016004 
[3] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[4] 
Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the twofluid NavierStokesPoisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 9851014. doi: 10.3934/cpaa.2013.12.985 
[5] 
Matthew Paddick. The strong inviscid limit of the isentropic compressible NavierStokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 26732709. doi: 10.3934/dcds.2016.36.2673 
[6] 
SunHo Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible NavierStokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465479. doi: 10.3934/nhm.2013.8.465 
[7] 
Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a onedimensional compressible nonNewtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209242. doi: 10.3934/cpaa.2017010 
[8] 
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible NavierStokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409425. doi: 10.3934/krm.2010.3.409 
[9] 
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2018, 38 (3) : 10631102. doi: 10.3934/dcds.2018045 
[10] 
Boris Haspot, Ewelina Zatorska. From the highly compressible NavierStokes equations to the porous medium equation  rate of convergence. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 31073123. doi: 10.3934/dcds.2016.36.3107 
[11] 
Daoyuan Fang, Ting Zhang. Compressible NavierStokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675694. doi: 10.3934/cpaa.2004.3.675 
[12] 
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible NavierStokes equations. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 25952613. doi: 10.3934/dcdsb.2012.17.2595 
[13] 
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible NavierStokes equations with vacuum. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 10851103. doi: 10.3934/dcds.2016.36.1085 
[14] 
Misha Perepelitsa. An illposed problem for the NavierStokes equations for compressible flows. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 609623. doi: 10.3934/dcds.2010.26.609 
[15] 
Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 47194733. doi: 10.3934/dcds.2014.34.4719 
[16] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[17] 
Linglong Du, Haitao Wang. Pointwise wave behavior of the NavierStokes equations in half space. Discrete & Continuous Dynamical Systems  A, 2018, 38 (3) : 13491363. doi: 10.3934/dcds.2018055 
[18] 
Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D NavierStokesVoigt equations and their NavierStokes limit. Discrete & Continuous Dynamical Systems  A, 2010, 28 (1) : 375403. doi: 10.3934/dcds.2010.28.375 
[19] 
Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolichyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 21452171. doi: 10.3934/cpaa.2013.12.2145 
[20] 
Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the threedimensional Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 637679. doi: 10.3934/krm.2019025 
2017 Impact Factor: 1.219
Tools
Metrics
Other articles
by authors
[Back to Top]