2011, 4(1): 153-167. doi: 10.3934/krm.2011.4.153

On a kinetic BGK model for slow chemical reactions

1. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy, Italy

Received  July 2010 Revised  October 2010 Published  January 2011

A recently proposed consistent BGK-type approach for chemically reacting gas mixtures is discussed, which accounts for the correct rates of transfer for mass, momentum and energy, and recovers the exact conservation equations and collision equilibria, including mass action law. In particular, the hydrodynamic limit is derived by a Chapman-Enskog procedure, and compared to existing results for the reactive and non-reactive cases.
Citation: Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153
References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965).

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993. doi: 10.1023/A:1014033703134.

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867. doi: 10.1063/1.857661.

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207. doi: 10.1007/s001610100066.

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43. doi: 10.1007/s10492-005-0003-5.

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21.

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.036327.

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112.

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988).

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000).

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970).

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964).

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381. doi: 10.1088/0305-4470/36/20/303.

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962).

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219. doi: 10.1016/j.euromechflu.2004.07.004.

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111. doi: 10.1098/rspa.1968.0178.

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972).

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380. doi: 10.1063/1.857458.

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999).

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197. doi: 10.1023/A:1019194113816.

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273. doi: 10.1063/1.1808651.

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003). doi: 10.1002/0471461296.

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006). doi: 10.1063/1.2185691.

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861. doi: 10.1016/S0009-2509(96)00458-7.

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005).

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413. doi: 10.1088/0305-4470/38/48/012.

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563. doi: 10.1016/S0378-4371(99)00336-2.

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002).

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965).

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993. doi: 10.1023/A:1014033703134.

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867. doi: 10.1063/1.857661.

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207. doi: 10.1007/s001610100066.

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43. doi: 10.1007/s10492-005-0003-5.

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21.

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.036327.

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112.

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988).

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000).

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970).

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964).

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381. doi: 10.1088/0305-4470/36/20/303.

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962).

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219. doi: 10.1016/j.euromechflu.2004.07.004.

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111. doi: 10.1098/rspa.1968.0178.

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972).

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380. doi: 10.1063/1.857458.

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999).

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197. doi: 10.1023/A:1019194113816.

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273. doi: 10.1063/1.1808651.

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003). doi: 10.1002/0471461296.

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006). doi: 10.1063/1.2185691.

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861. doi: 10.1016/S0009-2509(96)00458-7.

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005).

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413. doi: 10.1088/0305-4470/38/48/012.

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563. doi: 10.1016/S0378-4371(99)00336-2.

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002).

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507.

[1]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic & Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[2]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[3]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[4]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[5]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[6]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[7]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[8]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[9]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[10]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[11]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[12]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[13]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[14]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[15]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[16]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[17]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[18]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[19]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[20]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]