2011, 4(1): 361-384. doi: 10.3934/krm.2011.4.361

Non-Newtonian Couette-Poiseuille flow of a dilute gas

1. 

Département de Physique, Université Moulay Ismaïl, Meknès, Morocco

2. 

Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain

Received  September 2010 Revised  October 2010 Published  January 2011

The steady state of a dilute gas enclosed between two infinite parallel plates in relative motion and under the action of a uniform body force parallel to the plates is considered. The Bhatnagar-Gross-Krook model kinetic equation is analytically solved for this Couette-Poiseuille flow to first order in the force and for arbitrary values of the Knudsen number associated with the shear rate. This allows us to investigate the influence of the external force on the non-Newtonian properties of the Couette flow. Moreover, the Couette-Poiseuille flow is analyzed when the shear-rate Knudsen number and the scaled force are of the same order and terms up to second order are retained. In this way, the transition from the bimodal temperature profile characteristic of the pure force-driven Poiseuille flow to the parabolic profile characteristic of the pure Couette flow through several intermediate stages in the Couette-Poiseuille flow are described. A critical comparison with the Navier-Stokes solution of the problem is carried out.
Citation: Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361
References:
[1]

M. Alam and V. K. Chikkadi, Velocity distribution function and correlations in a granular Poiseuille flow,, J. Fluid Mech., 653 (2010), 175. doi: 10.1017/S0022112010000200.

[2]

M. Alaoui and A. Santos, Poiseuille flow driven by an external force,, Phys. Fluids A, 4 (1992), 1273. doi: 10.1063/1.858245.

[3]

K. Aoki, S. Takata and T. Nakanishi, A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force,, Phys. Rev. E, 65 (2002). doi: 10.1103/PhysRevE.65.026315.

[4]

E. Asmolov, N. K. Makashev and V. I. Nosik, Heat transfer between parallel plates in a gas of Maxwellian molecules,, Sov. Phys. Dokl., 24 (1979), 892.

[5]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,, Phy. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[6]

J. J. Brey, A. Santos and J. W. Dufty, Heat and momentum transport far from equilibrium,, Phys. Rev. A, 36 (1987), 2842. doi: 10.1103/PhysRevA.36.2842.

[7]

C. Cercignani, "The Boltzmann Equation and Its Applications,'', Springer-Verlag, (1988).

[8]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum Press, (1990).

[9]

C. Cercignani, M. Lampis and S. Lorenzani, Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects,, Phy. Fluids, 18 (2006). doi: 10.1063/1.2335847.

[10]

C. Cercignani and F. Sernagiotto, Cylindrical Poiseuille flow of a rarefied gas,, Phys. Fluids, 9 (1966), 40. doi: 10.1063/1.1761530.

[11]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,'', Cambridge University Press, (1970).

[12]

V. Chikkadi and M. Alam, Slip velocity and stresses in granular Poiseuille flow via event-driven simulation,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.021303.

[13]

J. R. Dorfman and H. van Beijeren, The kinetic theory of gases,, in, (1977), 65.

[14]

A. I. Erofeev and O. G. Friedlander, Macroscopic models for non-equilibrium flows of monatomic gas and normal solutions,, in, (2007), 117.

[15]

R. Esposito, J. L. Lebowitz and R. Marra, A hydrodynamic limit of the stationary Boltzmann equation in a slab,, Commun. Math. Phys., 160 (1994), 49. doi: 10.1007/BF02099789.

[16]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow,, Phys. Fluids, 18 (2006).

[17]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows,, in, (2007), 251.

[18]

L. S. García-Colín, R. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics,, Phys. Rep., 465 (2008), 149. doi: 10.1016/j.physrep.2008.04.010.

[19]

V. Garzó and M. López de Haro, Nonlinear transport for a dilute gas in steady Couette flow,, Phys. Fluids, 9 (1997), 776. doi: 10.1063/1.869232.

[20]

V. Garzó and A. Santos, "Kinetic Theory of Gases in Shear Flows. Nonlinear Transport,'', Kluwer Academic Publishers, (2003).

[21]

S. Hess and M. Malek Mansour, Temperature profile of a dilute gas undergoing a plane Poiseuille flow,, Physica A, 272 (1999), 481. doi: 10.1016/S0378-4371(99)00254-X.

[22]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, A Poiseuille viscometer for lattice gas automata,, Complex Syst., 1 (1987), 791.

[23]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,, Phys. Rev. A, 40 (1989), 4527. doi: 10.1103/PhysRevA.40.4527.

[24]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Hilbert-class or "normal'' solutions for stationary heat flow,, Phys. Rev. A, 39 (1989), 328. doi: 10.1103/PhysRevA.39.328.

[25]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Analysis of nonlinear transport in Couette flow,, Phys. Rev A, 40 (1989), 7165. doi: 10.1103/PhysRevA.40.7165.

[26]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,'', Springer, (2010). doi: 10.1007/978-3-642-11696-4.

[27]

M. Malek Mansour, F. Baras and A. L. Garcia, On the validity of hydrodynamics in plane Poiseuille flows,, Physica A, 240 (1997), 255. doi: 10.1016/S0378-4371(97)00149-0.

[28]

N. K. Makashev and V. I. Nosik, Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 589.

[29]

J. M. Montanero, M. Alaoui, A. Santos and V. Garzó, Monte Carlo simulation of the Boltzmann equation for steady Fourier flow,, Phys. Rev. E, 49 (1994), 367. doi: 10.1103/PhysRevE.49.367.

[30]

J. M. Montanero and V. Garzó, Nonlinear Couette flow in a dilute gas: Comparison between theory and molecular dynamics simulation,, Phys. Rev. E, 58 (1998), 1836. doi: 10.1103/PhysRevE.58.1836.

[31]

J. M. Montanero, A. Santos and V. Garzó, Monte Carlo simulation of nonlinear Couette flow in a dilute gas,, Phys. Fluids, 12 (2000), 3060. doi: 10.1063/1.1313563.

[32]

R. S. Myong, Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects,, Cont. Mech. Thermodyn., 21 (2009), 389. doi: 10.1007/s00161-009-0112-6.

[33]

V. I. Nosik, Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 495.

[34]

V. I. Nosik, Degeneration of the Chapman-Enskog expansion in one-dimensional motions of Maxwellian molecule gases,, in, 13 (1983), 237.

[35]

T. Ohwada, Y. Sone and K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules,, Phys. Fluids A, 1 (1989), 2042. doi: 10.1063/1.857478.

[36]

M. C. Potter, Stability of plane Couette-Poiseuille flow,, J. Fluid Mech., 24 (1966), 609. doi: 10.1017/S0022112066000855.

[37]

D. Risso and P. Cordero, Dilute gas Couette flow: Theory and molecular dynamics simulation,, Phys. Rev. E, 56 (1997), 489. doi: 10.1103/PhysRevE.56.489.

[38]

D. Risso and P. Cordero, Generalized hydrodynamics for a Poiseuille flow: theory and simulations,, Phys. Rev. E, 58 (1998), 546. doi: 10.1103/PhysRevE.58.546.

[39]

M. Sabbane, M. Tij and A. Santos, Maxwellian gas undergoing a stationary Poiseuille flow in a pipe,, Physica A, 327 (2003), 264. doi: 10.1016/S0378-4371(03)00513-2.

[40]

A. Santos, Solutions of the moment hierarchy in the kinetic theory of Maxwell models,, Cont. Mech. Thermodyn., 21 (2009), 361. doi: 10.1007/s00161-009-0113-5.

[41]

A. Santos, J. J. Brey and V. Garzó, Kinetic model for steady heat flow,, Phys. Rev. A, 34 (1986), 5047. doi: 10.1103/PhysRevA.34.5047.

[42]

A. Santos, J. J. Brey, C. S. Kim and J. W. Dufty, Velocity distribution for a gas with steady heat flow,, Phys. Rev. A, 39 (1989), 320. doi: 10.1103/PhysRevA.39.320.

[43]

A. Santos, V. Garzó and J. J. Brey, Comparison between the homogeneous-shear and the sliding-boundary methods to produce shear flow,, Phys. Rev. A, 46 (1992), 8018. doi: 10.1103/PhysRevA.46.8018.

[44]

A. Santos and M. Tij, Gravity-driven Poiseuille flow in dilute gases. Elastic and inelastic collisions,, in, (2006), 53.

[45]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers,, in, (1991), 19.

[46]

Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit,, Annu. Rev. Fluid Mech., 32 (2000), 779. doi: 10.1146/annurev.fluid.32.1.779.

[47]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser, (2002).

[48]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,'', Springer, (2005).

[49]

H. Struchtrup and M Torrilhon, Higher-order effects in rarefied channel flows,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.046301.

[50]

S. A. Suslov and T. D. Tran, Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid,, J. Non-Newton. Fluid Mech., 154 (2006), 170.

[51]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009). doi: 10.1063/1.3064123.

[52]

R. Tehver, F. Toigo, J. Koplik and J. R. Banavar, Thermal walls in computer simulations,, Phys. Rev. E, 57 (1998). doi: 10.1103/PhysRevE.57.R17.

[53]

E. M. Thurlow and J. C. Klewicki, Experimental study of turbulent Poiseuille-Couette flow,, Phys. Fluids, 12 (2000), 865. doi: 10.1063/1.870341.

[54]

M. Tij, V. Garzó and A. Santos, Influence of gravity on nonlinear transport in the planar Couette flow,, Phys. Fluids, 11 (1999), 893. doi: 10.1063/1.869960.

[55]

M. Tij, M. Sabbane and A. Santos, Nonlinear Poiseuille flow in a gas,, Phys. Fluids, 10 (1998), 1021. doi: 10.1063/1.869621.

[56]

M. Tij and A. Santos, Perturbation analysis of a stationary nonequilibrium flow generated by an external force,, J. Stat. Phys., 76 (1994), 1399. doi: 10.1007/BF02187068.

[57]

M. Tij and A. Santos, Combined heat and momentum transport in a dilute gas,, Phys. Fluids, 7 (1995), 2858. doi: 10.1063/1.868662.

[58]

M. Tij and A. Santos, Non-Newtonian Poiseuille flow of a gas in a pipe,, Physica A, 289 (2001), 336. doi: 10.1016/S0378-4371(00)00405-2.

[59]

M. Tij and A. Santos, Poiseuille flow in a heated granular gas,, J. Stat. Phys., 117 (2004), 901. doi: 10.1007/s10955-004-5710-x.

[60]

M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos and J. W. Dufty, Nonlinear Couette flow in a low density granular gas,, J. Stat. Phys., 103 (2001), 1035. doi: 10.1023/A:1010317207358.

[61]

B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow,, Phys. Rev. E, 55 (1997), 2800. doi: 10.1103/PhysRevE.55.2800.

[62]

K. P. Travis, B. D. Todd and D. J. Evans, Poiseuille flow of molecular fluids,, Physica A, 240 (1997), 315. doi: 10.1016/S0378-4371(97)00155-6.

[63]

C. Truesdell and R. G. Muncaster, "Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas,'', Academic Press, (1980).

[64]

F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow,, Phys. Rev. E, 60 (1999), 4063. doi: 10.1103/PhysRevE.60.4063.

[65]

F. Vega Reyes, A. Santos and V. Garzó, Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.028001.

[66]

P. Welander, On the temperature jump in a rarefied gas,, Akiv för Fysik, 7 (1954), 507.

[67]

K. Xu, Super-Burnett solutions for Poiseuille flow,, Phys. Fluids, 15 (2003), 2077. doi: 10.1063/1.1577564.

[68]

Y. Zheng, A. L. Garcia and B. J. Alder, Comparison of kinetic theory and hydrodynamics for Poiseuille flow,, J. Stat. Phys., 109 (2002), 495. doi: 10.1023/A:1020498111819.

show all references

References:
[1]

M. Alam and V. K. Chikkadi, Velocity distribution function and correlations in a granular Poiseuille flow,, J. Fluid Mech., 653 (2010), 175. doi: 10.1017/S0022112010000200.

[2]

M. Alaoui and A. Santos, Poiseuille flow driven by an external force,, Phys. Fluids A, 4 (1992), 1273. doi: 10.1063/1.858245.

[3]

K. Aoki, S. Takata and T. Nakanishi, A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force,, Phys. Rev. E, 65 (2002). doi: 10.1103/PhysRevE.65.026315.

[4]

E. Asmolov, N. K. Makashev and V. I. Nosik, Heat transfer between parallel plates in a gas of Maxwellian molecules,, Sov. Phys. Dokl., 24 (1979), 892.

[5]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,, Phy. Rev., 94 (1954), 511. doi: 10.1103/PhysRev.94.511.

[6]

J. J. Brey, A. Santos and J. W. Dufty, Heat and momentum transport far from equilibrium,, Phys. Rev. A, 36 (1987), 2842. doi: 10.1103/PhysRevA.36.2842.

[7]

C. Cercignani, "The Boltzmann Equation and Its Applications,'', Springer-Verlag, (1988).

[8]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum Press, (1990).

[9]

C. Cercignani, M. Lampis and S. Lorenzani, Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects,, Phy. Fluids, 18 (2006). doi: 10.1063/1.2335847.

[10]

C. Cercignani and F. Sernagiotto, Cylindrical Poiseuille flow of a rarefied gas,, Phys. Fluids, 9 (1966), 40. doi: 10.1063/1.1761530.

[11]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,'', Cambridge University Press, (1970).

[12]

V. Chikkadi and M. Alam, Slip velocity and stresses in granular Poiseuille flow via event-driven simulation,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.021303.

[13]

J. R. Dorfman and H. van Beijeren, The kinetic theory of gases,, in, (1977), 65.

[14]

A. I. Erofeev and O. G. Friedlander, Macroscopic models for non-equilibrium flows of monatomic gas and normal solutions,, in, (2007), 117.

[15]

R. Esposito, J. L. Lebowitz and R. Marra, A hydrodynamic limit of the stationary Boltzmann equation in a slab,, Commun. Math. Phys., 160 (1994), 49. doi: 10.1007/BF02099789.

[16]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow,, Phys. Fluids, 18 (2006).

[17]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows,, in, (2007), 251.

[18]

L. S. García-Colín, R. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics,, Phys. Rep., 465 (2008), 149. doi: 10.1016/j.physrep.2008.04.010.

[19]

V. Garzó and M. López de Haro, Nonlinear transport for a dilute gas in steady Couette flow,, Phys. Fluids, 9 (1997), 776. doi: 10.1063/1.869232.

[20]

V. Garzó and A. Santos, "Kinetic Theory of Gases in Shear Flows. Nonlinear Transport,'', Kluwer Academic Publishers, (2003).

[21]

S. Hess and M. Malek Mansour, Temperature profile of a dilute gas undergoing a plane Poiseuille flow,, Physica A, 272 (1999), 481. doi: 10.1016/S0378-4371(99)00254-X.

[22]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, A Poiseuille viscometer for lattice gas automata,, Complex Syst., 1 (1987), 791.

[23]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,, Phys. Rev. A, 40 (1989), 4527. doi: 10.1103/PhysRevA.40.4527.

[24]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Hilbert-class or "normal'' solutions for stationary heat flow,, Phys. Rev. A, 39 (1989), 328. doi: 10.1103/PhysRevA.39.328.

[25]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Analysis of nonlinear transport in Couette flow,, Phys. Rev A, 40 (1989), 7165. doi: 10.1103/PhysRevA.40.7165.

[26]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,'', Springer, (2010). doi: 10.1007/978-3-642-11696-4.

[27]

M. Malek Mansour, F. Baras and A. L. Garcia, On the validity of hydrodynamics in plane Poiseuille flows,, Physica A, 240 (1997), 255. doi: 10.1016/S0378-4371(97)00149-0.

[28]

N. K. Makashev and V. I. Nosik, Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 589.

[29]

J. M. Montanero, M. Alaoui, A. Santos and V. Garzó, Monte Carlo simulation of the Boltzmann equation for steady Fourier flow,, Phys. Rev. E, 49 (1994), 367. doi: 10.1103/PhysRevE.49.367.

[30]

J. M. Montanero and V. Garzó, Nonlinear Couette flow in a dilute gas: Comparison between theory and molecular dynamics simulation,, Phys. Rev. E, 58 (1998), 1836. doi: 10.1103/PhysRevE.58.1836.

[31]

J. M. Montanero, A. Santos and V. Garzó, Monte Carlo simulation of nonlinear Couette flow in a dilute gas,, Phys. Fluids, 12 (2000), 3060. doi: 10.1063/1.1313563.

[32]

R. S. Myong, Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects,, Cont. Mech. Thermodyn., 21 (2009), 389. doi: 10.1007/s00161-009-0112-6.

[33]

V. I. Nosik, Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 495.

[34]

V. I. Nosik, Degeneration of the Chapman-Enskog expansion in one-dimensional motions of Maxwellian molecule gases,, in, 13 (1983), 237.

[35]

T. Ohwada, Y. Sone and K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules,, Phys. Fluids A, 1 (1989), 2042. doi: 10.1063/1.857478.

[36]

M. C. Potter, Stability of plane Couette-Poiseuille flow,, J. Fluid Mech., 24 (1966), 609. doi: 10.1017/S0022112066000855.

[37]

D. Risso and P. Cordero, Dilute gas Couette flow: Theory and molecular dynamics simulation,, Phys. Rev. E, 56 (1997), 489. doi: 10.1103/PhysRevE.56.489.

[38]

D. Risso and P. Cordero, Generalized hydrodynamics for a Poiseuille flow: theory and simulations,, Phys. Rev. E, 58 (1998), 546. doi: 10.1103/PhysRevE.58.546.

[39]

M. Sabbane, M. Tij and A. Santos, Maxwellian gas undergoing a stationary Poiseuille flow in a pipe,, Physica A, 327 (2003), 264. doi: 10.1016/S0378-4371(03)00513-2.

[40]

A. Santos, Solutions of the moment hierarchy in the kinetic theory of Maxwell models,, Cont. Mech. Thermodyn., 21 (2009), 361. doi: 10.1007/s00161-009-0113-5.

[41]

A. Santos, J. J. Brey and V. Garzó, Kinetic model for steady heat flow,, Phys. Rev. A, 34 (1986), 5047. doi: 10.1103/PhysRevA.34.5047.

[42]

A. Santos, J. J. Brey, C. S. Kim and J. W. Dufty, Velocity distribution for a gas with steady heat flow,, Phys. Rev. A, 39 (1989), 320. doi: 10.1103/PhysRevA.39.320.

[43]

A. Santos, V. Garzó and J. J. Brey, Comparison between the homogeneous-shear and the sliding-boundary methods to produce shear flow,, Phys. Rev. A, 46 (1992), 8018. doi: 10.1103/PhysRevA.46.8018.

[44]

A. Santos and M. Tij, Gravity-driven Poiseuille flow in dilute gases. Elastic and inelastic collisions,, in, (2006), 53.

[45]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers,, in, (1991), 19.

[46]

Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit,, Annu. Rev. Fluid Mech., 32 (2000), 779. doi: 10.1146/annurev.fluid.32.1.779.

[47]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser, (2002).

[48]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,'', Springer, (2005).

[49]

H. Struchtrup and M Torrilhon, Higher-order effects in rarefied channel flows,, Phys. Rev. E, 78 (2008). doi: 10.1103/PhysRevE.78.046301.

[50]

S. A. Suslov and T. D. Tran, Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid,, J. Non-Newton. Fluid Mech., 154 (2006), 170.

[51]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009). doi: 10.1063/1.3064123.

[52]

R. Tehver, F. Toigo, J. Koplik and J. R. Banavar, Thermal walls in computer simulations,, Phys. Rev. E, 57 (1998). doi: 10.1103/PhysRevE.57.R17.

[53]

E. M. Thurlow and J. C. Klewicki, Experimental study of turbulent Poiseuille-Couette flow,, Phys. Fluids, 12 (2000), 865. doi: 10.1063/1.870341.

[54]

M. Tij, V. Garzó and A. Santos, Influence of gravity on nonlinear transport in the planar Couette flow,, Phys. Fluids, 11 (1999), 893. doi: 10.1063/1.869960.

[55]

M. Tij, M. Sabbane and A. Santos, Nonlinear Poiseuille flow in a gas,, Phys. Fluids, 10 (1998), 1021. doi: 10.1063/1.869621.

[56]

M. Tij and A. Santos, Perturbation analysis of a stationary nonequilibrium flow generated by an external force,, J. Stat. Phys., 76 (1994), 1399. doi: 10.1007/BF02187068.

[57]

M. Tij and A. Santos, Combined heat and momentum transport in a dilute gas,, Phys. Fluids, 7 (1995), 2858. doi: 10.1063/1.868662.

[58]

M. Tij and A. Santos, Non-Newtonian Poiseuille flow of a gas in a pipe,, Physica A, 289 (2001), 336. doi: 10.1016/S0378-4371(00)00405-2.

[59]

M. Tij and A. Santos, Poiseuille flow in a heated granular gas,, J. Stat. Phys., 117 (2004), 901. doi: 10.1007/s10955-004-5710-x.

[60]

M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos and J. W. Dufty, Nonlinear Couette flow in a low density granular gas,, J. Stat. Phys., 103 (2001), 1035. doi: 10.1023/A:1010317207358.

[61]

B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow,, Phys. Rev. E, 55 (1997), 2800. doi: 10.1103/PhysRevE.55.2800.

[62]

K. P. Travis, B. D. Todd and D. J. Evans, Poiseuille flow of molecular fluids,, Physica A, 240 (1997), 315. doi: 10.1016/S0378-4371(97)00155-6.

[63]

C. Truesdell and R. G. Muncaster, "Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas,'', Academic Press, (1980).

[64]

F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow,, Phys. Rev. E, 60 (1999), 4063. doi: 10.1103/PhysRevE.60.4063.

[65]

F. Vega Reyes, A. Santos and V. Garzó, Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?,, Phys. Rev. Lett., 104 (2010). doi: 10.1103/PhysRevLett.104.028001.

[66]

P. Welander, On the temperature jump in a rarefied gas,, Akiv för Fysik, 7 (1954), 507.

[67]

K. Xu, Super-Burnett solutions for Poiseuille flow,, Phys. Fluids, 15 (2003), 2077. doi: 10.1063/1.1577564.

[68]

Y. Zheng, A. L. Garcia and B. J. Alder, Comparison of kinetic theory and hydrodynamics for Poiseuille flow,, J. Stat. Phys., 109 (2002), 495. doi: 10.1023/A:1020498111819.

[1]

Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583

[2]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[3]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[4]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[5]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[6]

Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319

[7]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[8]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[9]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[10]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[11]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[12]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[13]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[14]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[15]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[16]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Erratum to: Ghost effect by curvature in planar Couette flow [1]. Kinetic & Related Models, 2012, 5 (3) : 669-672. doi: 10.3934/krm.2012.5.669

[17]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[18]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[19]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[20]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]