2011, 4(4): 901-918. doi: 10.3934/krm.2011.4.901

Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system

1. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathmatiques de Toulouse, F-31062 Toulouse, France, France, France

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  July 2011 Revised  August 2011 Published  November 2011

This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.
Citation: Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901
References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67. doi: 10.1063/1.360583.

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573. doi: 10.1016/S0021-9991(03)00193-1.

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007). doi: 10.1016/B978-008044535-9/50002-9.

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595. doi: 10.1080/00411459608222915.

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451. doi: 10.1088/0031-8949/72/6/004.

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15. doi: 10.1080/03091929108229123.

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59. doi: 10.1016/j.physd.2005.06.003.

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1. doi: 10.1016/0021-9991(89)90220-9.

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20. doi: 10.1238/Physica.Topical.107a00020.

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398. doi: 10.1006/jcph.1993.1039.

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005). doi: 10.1111/j.1745-3933.2005.00028.x.

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008). doi: 10.1103/PhysRevLett.101.105003.

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753. doi: 10.1016/j.jcp.2007.01.001.

show all references

References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67. doi: 10.1063/1.360583.

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573. doi: 10.1016/S0021-9991(03)00193-1.

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007). doi: 10.1016/B978-008044535-9/50002-9.

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595. doi: 10.1080/00411459608222915.

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451. doi: 10.1088/0031-8949/72/6/004.

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15. doi: 10.1080/03091929108229123.

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59. doi: 10.1016/j.physd.2005.06.003.

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1. doi: 10.1016/0021-9991(89)90220-9.

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20. doi: 10.1238/Physica.Topical.107a00020.

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398. doi: 10.1006/jcph.1993.1039.

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005). doi: 10.1111/j.1745-3933.2005.00028.x.

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008). doi: 10.1103/PhysRevLett.101.105003.

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753. doi: 10.1016/j.jcp.2007.01.001.

[1]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[2]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[3]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[4]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[5]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[6]

Zhong Tan, Huaqiao Wang, Yucong Wang. Time-splitting methods to solve the Hall-MHD systems with Lévy noises. Kinetic & Related Models, 2019, 12 (1) : 243-267. doi: 10.3934/krm.2019011

[7]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[8]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[9]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[10]

Yachun Li, Xucai Ren. Non-relativistic global limits of the entropy solutions to the relativistic Euler equations with $\gamma$-law. Communications on Pure & Applied Analysis, 2006, 5 (4) : 963-979. doi: 10.3934/cpaa.2006.5.963

[11]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[12]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[13]

Augusto Visintin. Ohm-Hall conduction in hysteresis-free ferromagnetic processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 551-563. doi: 10.3934/dcdsb.2013.18.551

[14]

Chien-Hong Cho, Marcus Wunsch. Global weak solutions to the generalized Proudman-Johnson equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1387-1396. doi: 10.3934/cpaa.2012.11.1387

[15]

Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575

[16]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[17]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[18]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[19]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[20]

Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (67)

[Back to Top]