December  2011, 4(4): 901-918. doi: 10.3934/krm.2011.4.901

Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system

1. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, Institut de Mathmatiques de Toulouse, F-31062 Toulouse, France, France, France

2. 

Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708, United States

Received  July 2011 Revised  August 2011 Published  November 2011

This paper deals with the derivation and analysis of the the Hall Magneto-Hydrodynamic equations. We first provide a derivation of this system from a two-fluids Euler-Maxwell system for electrons and ions, through a set of scaling limits. We also propose a kinetic formulation for the Hall-MHD equations which contains as fluid closure different variants of the Hall-MHD model. Then, we prove the existence of global weak solutions for the incompressible viscous resistive Hall-MHD model. We use the particular structure of the Hall term which has zero contribution to the energy identity. Finally, we discuss particular solutions in the form of axisymmetric purely swirling magnetic fields and propose some regularization of the Hall equation.
Citation: Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901
References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

show all references

References:
[1]

L. Arnold, J. Dreher and R. Grauer, A semi-implicit Hall-MHD solver using whistler wave preconditioning,, Comput. Phys. Comm., 178 (2008), 553.   Google Scholar

[2]

S. I. Braginskii, Transport processes in a plasma,, in, (1965).   Google Scholar

[3]

B. Cassany and P. Grua, Analysis of the operating regimes of microsecond-conduction-time plasma opening switches,, J. Appl. Phys., 78 (1995), 67.  doi: 10.1063/1.360583.  Google Scholar

[4]

L. Chacòn and D. A. Knoll, A 2D high-$\beta$ Hall MHD implicit nonlinear solver,, J. Comput. Phys., 188 (2003), 573.  doi: 10.1016/S0021-9991(03)00193-1.  Google Scholar

[5]

P. Degond, Asymptotic continuum models for plasmas and disparate mass gaseous binary mixtures,, in, (2007).  doi: 10.1016/B978-008044535-9/50002-9.  Google Scholar

[6]

P. Degond, F. Deluzet, G. Dimarco, G. Gallice, P. Santagati and C. Tessieras, Simulation of non-equilibrium plasmas with a numerical noise-reduced particle-in-cell method,, in, (2010), 10.   Google Scholar

[7]

P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases,, Transport Theory Statist. Phys., 25 (1996), 595.  doi: 10.1080/00411459608222915.  Google Scholar

[8]

J. Dreher, V. Runban and R. Grauer, Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation,, Physica Scripta, 72 (2005), 451.  doi: 10.1088/0031-8949/72/6/004.  Google Scholar

[9]

G. Duvaut and J.-L. Lions, inéquations en thermoélasticité et magnétohydrodynamique,, Arch. Ration. Mech. Anal., 46 (1972), 241.   Google Scholar

[10]

C. Evans, "Partial Differential Equations,'', 2nd edition, 19 (2009).   Google Scholar

[11]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophysical and Astrophysical Fluid Dynamics, 62 (1991), 15.  doi: 10.1080/03091929108229123.  Google Scholar

[12]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Physica D, 208 (2005), 59.  doi: 10.1016/j.physd.2005.06.003.  Google Scholar

[13]

D. S. Harned and Z. Mikić, Accurate semi-implicit treatment of the Hall effect in magnetohydrodynamic computations,, J. Comput. Phys., 83 (1989), 1.  doi: 10.1016/0021-9991(89)90220-9.  Google Scholar

[14]

J. D. Huba and L. I. Rudakov, Hall magnetohydrodynamics of reversed field current layers,, Physica Scripta, T107 (2004), 20.  doi: 10.1238/Physica.Topical.107a00020.  Google Scholar

[15]

F. Kazeminezhad, J. N. Leboeuf, F. Brunel and J. M. Dawson, A discrete model for MHD incorporating the Hall term,, J. Comput. Phys., 104 (1993), 398.  doi: 10.1006/jcph.1993.1039.  Google Scholar

[16]

A. S. Kingsep, Yu. V. Mokhov and Y. V. Chukbar, Nonlinear skin phenomenas in plasmas, Nonlinear and Turbulent Processes in Physics,, in, (1983), 10.   Google Scholar

[17]

J.-L.Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires,'', Dunod, (1969).   Google Scholar

[18]

J.-G. Liu and W.-C. Wang, Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier-Stokes equation,, SIAM J. Math. Anal., 41 (2009), 1825.   Google Scholar

[19]

S. M. Mahajan and V. Krishan, Exact solution of the incompressible Hall magnetohydrodynamics,, Mon. Not. R. Astron. Soc., 359 (2005).  doi: 10.1111/j.1745-3933.2005.00028.x.  Google Scholar

[20]

F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation. Part 1: Basic results,, Ann. Inst. Henri Poincaré, 16 (1999), 221.   Google Scholar

[21]

A. N. Simakov and L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics,, Phys. Rev. Lett., 101 (2008).  doi: 10.1103/PhysRevLett.101.105003.  Google Scholar

[22]

F. Valentini, P. Tràvníček, F. Califano, P. Hellinger and A. Mangeney, A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma,, J. Comput. Phys., 225 (2007), 753.  doi: 10.1016/j.jcp.2007.01.001.  Google Scholar

[1]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[2]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[6]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[7]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[8]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[9]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[13]

Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046

[14]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[15]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[16]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[17]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[18]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[19]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[20]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (101)

[Back to Top]