2012, 5(1): 113-128. doi: 10.3934/krm.2012.5.113

Estimates of solutions of linear neutron transport equation at large time and spectral singularities

1. 

Laboratory of Quantum Networks and Department of Mathematical Physic, Faculty of Physics, St.Petersburg State University, 198504, Saint Petersburg, Russian Federation

Received  August 2010 Revised  August 2011 Published  January 2012

The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szőkefalvi-Nagy - Foiaş functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum. An upper estimate for the remainder is established.
Citation: Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113
References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217. doi: 10.1002/cpa.3160080202.

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125. doi: 10.1215/S0012-7094-56-02312-2.

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389. doi: 10.1512/iumj.2002.51.2180.

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106. doi: 10.1134/S0001434611010111.

show all references

References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217. doi: 10.1002/cpa.3160080202.

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125. doi: 10.1215/S0012-7094-56-02312-2.

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389. doi: 10.1512/iumj.2002.51.2180.

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106. doi: 10.1134/S0001434611010111.

[1]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[2]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[3]

Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure & Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9

[4]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[5]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[6]

Nakao Hayashi, Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the modified witham equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1407-1448. doi: 10.3934/cpaa.2018069

[7]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[8]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[9]

Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387

[10]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[11]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[12]

Josef DiblÍk, Rigoberto Medina. Exact asymptotics of positive solutions to Dickman equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 101-121. doi: 10.3934/dcdsb.2018007

[13]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[14]

Sze-Man Ngai, Wei Tang, Yuanyuan Xie. Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1849-1887. doi: 10.3934/dcds.2018076

[15]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[16]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[17]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[18]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[19]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[20]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]