March  2012, 5(1): 113-128. doi: 10.3934/krm.2012.5.113

Estimates of solutions of linear neutron transport equation at large time and spectral singularities

1. 

Laboratory of Quantum Networks and Department of Mathematical Physic, Faculty of Physics, St.Petersburg State University, 198504, Saint Petersburg, Russian Federation

Received  August 2010 Revised  August 2011 Published  January 2012

The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szőkefalvi-Nagy - Foiaş functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum. An upper estimate for the remainder is established.
Citation: Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113
References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).   Google Scholar

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.   Google Scholar

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217.  doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125.  doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389.  doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.   Google Scholar

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.   Google Scholar

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.   Google Scholar

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.   Google Scholar

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.   Google Scholar

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.   Google Scholar

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).   Google Scholar

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.   Google Scholar

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.   Google Scholar

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.   Google Scholar

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106.  doi: 10.1134/S0001434611010111.  Google Scholar

show all references

References:
[1]

B. Sz.-Nagy and C. Foiaş, "Analyse Harmonique des Opérateurs de l'Espase de Hilbert,", (French) [Harmonic Analysis of Operators in Hilbert Space], (1967).   Google Scholar

[2]

J. Lehner, The spectrum of the neutron transport operator for the infinite slab,, J. Math. Mech., 11 (1962), 173.   Google Scholar

[3]

J. Lehner and G. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons,, Comm. Pure Appl. Math., 8 (1955), 217.  doi: 10.1002/cpa.3160080202.  Google Scholar

[4]

J. Lehner and G. Wing, Solution of the linearized Boltzmann transport equation for the slab geometry,, Duke Math. J., 23 (1956), 125.  doi: 10.1215/S0012-7094-56-02312-2.  Google Scholar

[5]

Yu. Kuperin, S. Naboko and R. Romanov, Spectral analysis of the transport operator: A functional model approach,, Indiana Univ. Math. J., 51 (2002), 1389.  doi: 10.1512/iumj.2002.51.2180.  Google Scholar

[6]

B. S. Pavlov, On separation conditions for the spectral components of a dissipative operator,, Izv. Akad. Nauk SSSR Ser. Mat., 39 (1975), 123.   Google Scholar

[7]

M. A. Naĭmark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,, (Russian) Trudy Mosk. Mat. Obšč., 3 (1954), 181.   Google Scholar

[8]

B. S. Pavlov, Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model,, in, 65 (1996), 87.   Google Scholar

[9]

S. N. Naboko, Functional model of perturbation theory and its applications to scattering theory,, (Russian) Boundary value problems of mathematical physics, 10 (1980), 86.   Google Scholar

[10]

S. N. Naboko, On the conditions for existence of wave operators in the nonselfadjoint case,, (Russian) in, 157 (1987), 132.   Google Scholar

[11]

S. Naboko and R. Romanov, Spectral singularities and asymptotics of contractive semigroups. I,, Acta Sci. Math. (Szeged), 70 (2004), 379.   Google Scholar

[12]

N. K. Nikol'skiĭ, "Treatise on the Shift Operator. Spectral Function Theory,", With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, 273 (1986).   Google Scholar

[13]

R. Romanov, A remark on equivalence of weak and strong definitions of the absolutely continuous subspace for nonself-adjoint operators,, in, 154 (2004), 179.   Google Scholar

[14]

L. A.Sahnovič, Dissipative operators with absolutely continuous spectrum,, (Russian) Trudy Moskov. Mat. Obšč., 19 (1968), 211.   Google Scholar

[15]

A. S. Tikhonov, Functional model and duality of spectral components for operators with continuous spectrum on a curve,, (Russian) Algebra i Analiz, 14 (2002), 158.   Google Scholar

[16]

R. Romanov and M. Tihomirov, On the selfadjoint subspace of the one-velocity transport operator,, Math. Notes, 89 (2011), 106.  doi: 10.1134/S0001434611010111.  Google Scholar

[1]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[4]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[5]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[16]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[17]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[20]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]