-
Previous Article
Second order all speed method for the isentropic Euler equations
- KRM Home
- This Issue
-
Next Article
Estimates of solutions of linear neutron transport equation at large time and spectral singularities
Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior
1. | Department of Mathematics Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States |
References:
[1] |
J. Diff. Eqns., 25 (1977), 342-364.
doi: 10.1016/0022-0396(77)90049-3. |
[2] |
C. R. Academy of Sci. Paris Sér. I Math., 313 (1991), 411-416. |
[3] |
Arch. Rational Mech. Anal., 159 (2001), 85-108.
doi: 10.1007/s002050100150. |
[4] |
Commun. PDE, 27 (2002), 791-808.
doi: 10.1081/PDE-120002874. |
[5] |
SIAM, Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[6] |
Trans. Th. Stat. Phys., 23 (1994), 411-453.
doi: 10.1080/00411459408203873. |
[7] |
Commun. PDE, 20 (1995), 647-676.
doi: 10.1080/03605309508821107. |
[8] |
Arch. Rat. Mech. Anal., 92 (1986), 59-90.
doi: 10.1007/BF00250732. |
[9] |
Math. Meth. Appl. Sci., 16 (1993), 75-86.
doi: 10.1002/mma.1670160202. |
[10] |
Math. Meth. Appl. Sci., 3 (1981), 229-248 and 4 (1982), 19-32. Google Scholar |
[11] |
J. Statist. Phys., 103 (2001), 1107-1123.
doi: 10.1023/A:1010321308267. |
[12] |
Z. Astrophys., 30 (1952), 213-229. |
[13] |
Akad. Nauk SSSR. Shurnal Eksper. Fiz., 16 (1946), 574-586. |
[14] |
Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[15] |
Osaka J. Math., 15 (1978), 245-261. |
[16] |
Math. Methods Appl. Sci., 31 (2008), 375-389.
doi: 10.1002/mma.915. |
[17] |
Math. Methods Appl. Sci., 30 (2007), 529-548.
doi: 10.1002/mma.796. |
[18] |
Transport Theory Statist. Phys., 36 (2007), 531-562.
doi: 10.1080/00411450701703480. |
[19] |
Comm. Partial Differential Equations, 31 (2006), 349-370. |
[20] |
J. Diff. Eqns., 95 (1992), 281-303. |
[21] |
Commun. Part. Diff. Eqns., 16 (1991), 1313-1335. |
[22] |
Mathematical Methods in the Applied Sciences., 34 (2011), 262-277.
doi: 10.1002/mma.1354. |
[23] |
Comm. PDE, 28 (2003), 1057-1084.
doi: 10.1081/PDE-120021186. |
[24] |
Math. Meth. Appl. Sci., 26 (2003), 273-296.
doi: 10.1002/mma.354. |
[25] |
North-Holland, Amsterdam, 1967. Google Scholar |
[26] |
Comm. Pure Appl. Math., 33 (1980), 173-197.
doi: 10.1002/cpa.3160330205. |
show all references
References:
[1] |
J. Diff. Eqns., 25 (1977), 342-364.
doi: 10.1016/0022-0396(77)90049-3. |
[2] |
C. R. Academy of Sci. Paris Sér. I Math., 313 (1991), 411-416. |
[3] |
Arch. Rational Mech. Anal., 159 (2001), 85-108.
doi: 10.1007/s002050100150. |
[4] |
Commun. PDE, 27 (2002), 791-808.
doi: 10.1081/PDE-120002874. |
[5] |
SIAM, Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[6] |
Trans. Th. Stat. Phys., 23 (1994), 411-453.
doi: 10.1080/00411459408203873. |
[7] |
Commun. PDE, 20 (1995), 647-676.
doi: 10.1080/03605309508821107. |
[8] |
Arch. Rat. Mech. Anal., 92 (1986), 59-90.
doi: 10.1007/BF00250732. |
[9] |
Math. Meth. Appl. Sci., 16 (1993), 75-86.
doi: 10.1002/mma.1670160202. |
[10] |
Math. Meth. Appl. Sci., 3 (1981), 229-248 and 4 (1982), 19-32. Google Scholar |
[11] |
J. Statist. Phys., 103 (2001), 1107-1123.
doi: 10.1023/A:1010321308267. |
[12] |
Z. Astrophys., 30 (1952), 213-229. |
[13] |
Akad. Nauk SSSR. Shurnal Eksper. Fiz., 16 (1946), 574-586. |
[14] |
Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[15] |
Osaka J. Math., 15 (1978), 245-261. |
[16] |
Math. Methods Appl. Sci., 31 (2008), 375-389.
doi: 10.1002/mma.915. |
[17] |
Math. Methods Appl. Sci., 30 (2007), 529-548.
doi: 10.1002/mma.796. |
[18] |
Transport Theory Statist. Phys., 36 (2007), 531-562.
doi: 10.1080/00411450701703480. |
[19] |
Comm. Partial Differential Equations, 31 (2006), 349-370. |
[20] |
J. Diff. Eqns., 95 (1992), 281-303. |
[21] |
Commun. Part. Diff. Eqns., 16 (1991), 1313-1335. |
[22] |
Mathematical Methods in the Applied Sciences., 34 (2011), 262-277.
doi: 10.1002/mma.1354. |
[23] |
Comm. PDE, 28 (2003), 1057-1084.
doi: 10.1081/PDE-120021186. |
[24] |
Math. Meth. Appl. Sci., 26 (2003), 273-296.
doi: 10.1002/mma.354. |
[25] |
North-Holland, Amsterdam, 1967. Google Scholar |
[26] |
Comm. Pure Appl. Math., 33 (1980), 173-197.
doi: 10.1002/cpa.3160330205. |
[1] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004 |
[2] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[3] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[4] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[5] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 |
[6] |
Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021073 |
[7] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[8] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[9] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[10] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[11] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[12] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[13] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[14] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[15] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[16] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[17] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
[18] |
José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025 |
[19] |
Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 |
[20] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]