-
Previous Article
On a chemotaxis model with saturated chemotactic flux
- KRM Home
- This Issue
-
Next Article
Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures
Ghost effect for a vapor-vapor mixture
1. | Institut Polytechnique de Bordeaux, 351, cours de la Libération, 33405 TALENCE Cedex, France |
References:
[1] |
K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565. Google Scholar |
[2] |
K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629.
doi: 10.1023/A:1023876025363. |
[3] |
K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519.
doi: 10.1063/1.869671. |
[4] |
K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51.
doi: 10.1016/S0997-7546(02)00008-0. |
[5] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51.
|
[6] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125.
doi: 10.1007/s00205-010-0292-z. |
[7] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., (). Google Scholar |
[8] |
L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849.
doi: 10.1007/s10955-004-2708-3. |
[9] |
L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401.
doi: 10.1007/s10955-005-8008-8. |
[10] |
C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323.
|
[11] |
S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006). Google Scholar |
[12] |
S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153.
doi: 10.1002/mma.897. |
[13] |
S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653.
doi: 10.1002/mma.991. |
[14] |
S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185.
doi: 10.3934/krm.2008.1.185. |
[15] |
S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103.
|
[16] |
R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651.
doi: 10.1002/cpa.3160330506. |
[17] |
C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988).
|
[18] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994).
|
[19] |
L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994). Google Scholar |
[20] |
R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49.
doi: 10.1007/BF02099789. |
[21] |
R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389.
doi: 10.1007/BF02183355. |
[22] |
H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147.
doi: 10.1063/1.1706716. |
[23] |
H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26.
|
[24] |
H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154.
|
[25] |
Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002).
doi: 10.1007/978-1-4612-0061-1. |
[26] |
Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628.
doi: 10.1063/1.869133. |
[27] |
Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952.
doi: 10.1063/1.1649738. |
[28] |
S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004).
doi: 10.1063/1.1630324. |
[29] |
S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004).
doi: 10.1063/1.1723464. |
[30] |
S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743.
doi: 10.1063/1.870133. |
[31] |
S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205.
|
[32] |
R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987).
doi: 10.1063/1.866142. |
show all references
References:
[1] |
K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565. Google Scholar |
[2] |
K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629.
doi: 10.1023/A:1023876025363. |
[3] |
K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519.
doi: 10.1063/1.869671. |
[4] |
K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51.
doi: 10.1016/S0997-7546(02)00008-0. |
[5] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51.
|
[6] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125.
doi: 10.1007/s00205-010-0292-z. |
[7] |
L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., (). Google Scholar |
[8] |
L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849.
doi: 10.1007/s10955-004-2708-3. |
[9] |
L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401.
doi: 10.1007/s10955-005-8008-8. |
[10] |
C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323.
|
[11] |
S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006). Google Scholar |
[12] |
S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153.
doi: 10.1002/mma.897. |
[13] |
S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653.
doi: 10.1002/mma.991. |
[14] |
S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185.
doi: 10.3934/krm.2008.1.185. |
[15] |
S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103.
|
[16] |
R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651.
doi: 10.1002/cpa.3160330506. |
[17] |
C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988).
|
[18] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994).
|
[19] |
L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994). Google Scholar |
[20] |
R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49.
doi: 10.1007/BF02099789. |
[21] |
R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389.
doi: 10.1007/BF02183355. |
[22] |
H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147.
doi: 10.1063/1.1706716. |
[23] |
H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26.
|
[24] |
H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154.
|
[25] |
Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002).
doi: 10.1007/978-1-4612-0061-1. |
[26] |
Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628.
doi: 10.1063/1.869133. |
[27] |
Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952.
doi: 10.1063/1.1649738. |
[28] |
S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004).
doi: 10.1063/1.1630324. |
[29] |
S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004).
doi: 10.1063/1.1723464. |
[30] |
S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743.
doi: 10.1063/1.870133. |
[31] |
S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205.
|
[32] |
R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987).
doi: 10.1063/1.866142. |
[1] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[2] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[3] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[4] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[5] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[6] |
Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055 |
[7] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[8] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[9] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[10] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[11] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[12] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[13] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[14] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[15] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[16] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[17] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[18] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[19] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[20] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]