March  2012, 5(1): 21-50. doi: 10.3934/krm.2012.5.21

Ghost effect for a vapor-vapor mixture

1. 

Institut Polytechnique de Bordeaux, 351, cours de la Libération, 33405 TALENCE Cedex, France

Received  June 2011 Revised  September 2011 Published  January 2012

This paper studies the non linear Boltzmann equation for a two component gas at the small Knudsen number regime. The solution is found from a truncated Hilbert expansion. The first order of the fluid equations shows the ghost effect. The fluid system is solved when the boundary conditions are close enough to each other. Next the boundary conditions for the kinetic system are satisfied by adding for the first and the second order terms of the expansion Knudsen terms. The construction of such boundary layers requires the study of a Milne problem for mixtures. In a last part the rest term of the expansion is rigorously controled by using a new decomposition into a low and a high velocity part.
Citation: Stéphane Brull. Ghost effect for a vapor-vapor mixture. Kinetic & Related Models, 2012, 5 (1) : 21-50. doi: 10.3934/krm.2012.5.21
References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565.   Google Scholar

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629.  doi: 10.1023/A:1023876025363.  Google Scholar

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519.  doi: 10.1063/1.869671.  Google Scholar

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51.  doi: 10.1016/S0997-7546(02)00008-0.  Google Scholar

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51.   Google Scholar

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., ().   Google Scholar

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849.  doi: 10.1007/s10955-004-2708-3.  Google Scholar

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401.  doi: 10.1007/s10955-005-8008-8.  Google Scholar

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323.   Google Scholar

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006).   Google Scholar

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153.  doi: 10.1002/mma.897.  Google Scholar

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653.  doi: 10.1002/mma.991.  Google Scholar

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185.  doi: 10.3934/krm.2008.1.185.  Google Scholar

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103.   Google Scholar

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651.  doi: 10.1002/cpa.3160330506.  Google Scholar

[17]

C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988).   Google Scholar

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994).   Google Scholar

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994).   Google Scholar

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49.  doi: 10.1007/BF02099789.  Google Scholar

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389.  doi: 10.1007/BF02183355.  Google Scholar

[22]

H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147.  doi: 10.1063/1.1706716.  Google Scholar

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26.   Google Scholar

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154.   Google Scholar

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002).  doi: 10.1007/978-1-4612-0061-1.  Google Scholar

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628.  doi: 10.1063/1.869133.  Google Scholar

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952.  doi: 10.1063/1.1649738.  Google Scholar

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004).  doi: 10.1063/1.1630324.  Google Scholar

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004).  doi: 10.1063/1.1723464.  Google Scholar

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743.  doi: 10.1063/1.870133.  Google Scholar

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205.   Google Scholar

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987).  doi: 10.1063/1.866142.  Google Scholar

show all references

References:
[1]

K. Aoki, The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the Boltzman equation,, in, (2001), 565.   Google Scholar

[2]

K. Aoki, C. Bardos and S. Takata, Knudsen layer for a gas mixture,, Journ. Stat. Phys., 112 (2003), 629.  doi: 10.1023/A:1023876025363.  Google Scholar

[3]

K. Aoki, S. Takata and S. Kosuge, Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas,, Physics of Fluids, 10 (1998), 1519.  doi: 10.1063/1.869671.  Google Scholar

[4]

K. Aoki, S. Takata and S. Taguchi, Vapor flows with evaporation and condensation in the continuum limit: Effect of a trace of non condensable gas,, European Journal of Mechanics B Fluids, 22 (2003), 51.  doi: 10.1016/S0997-7546(02)00008-0.  Google Scholar

[5]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem,, Bull. Inst. Math. Academia Sinica (N.S.), 3 (2008), 51.   Google Scholar

[6]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation,, Arch. Ration. Mech. Anal., 198 (2010), 125.  doi: 10.1007/s00205-010-0292-z.  Google Scholar

[7]

L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Ghost effect by curvature in planar Couette flow,, to appear in Kinetic and Related Models., ().   Google Scholar

[8]

L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits,, Journ. Stat. Phys., 118 (2005), 849.  doi: 10.1007/s10955-004-2708-3.  Google Scholar

[9]

L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation,, Journ. Stat. Phys., 124 (2006), 401.  doi: 10.1007/s10955-005-8008-8.  Google Scholar

[10]

C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramer problems for the Boltzmann Equation of a hard sphere gas,, Commun. Pure and Applied Math., 39 (1986), 323.   Google Scholar

[11]

S. Brull, "Etude Cinétique d'un Gaz à Plusieurs Composantes,", Ph.D thesis, (2006).   Google Scholar

[12]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab,, Math. Meth. Appl. Sci., 31 (2008), 153.  doi: 10.1002/mma.897.  Google Scholar

[13]

S. Brull, The stationary Boltzmann equation for a two-component gas for soft forces in the slab,, Math. Meth. Appl. Sci., 31 (2008), 1653.  doi: 10.1002/mma.991.  Google Scholar

[14]

S. Brull, Problem of evaporation-condensation for a two component gas in the slab,, Kinetic and Related Models, 1 (2008), 185.  doi: 10.3934/krm.2008.1.185.  Google Scholar

[15]

S. Brull, The stationary Boltzmann equation for a two-component gas in the slab for different molecular masses,, Adv. in Diff. Eq., 15 (2010), 1103.   Google Scholar

[16]

R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation,, Commun. Pure and Applied Math., 33 (1980), 651.  doi: 10.1002/cpa.3160330506.  Google Scholar

[17]

C. Cercignani, "The Boltzman Equation and its Applications,", Applied Mathematical Sciences, 67 (1988).   Google Scholar

[18]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied Mathematical Sciences, 106 (1994).   Google Scholar

[19]

L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog,, preprint, (1994).   Google Scholar

[20]

R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann Equation in a slab,, Comm. Math. Phys., 160 (1994), 49.  doi: 10.1007/BF02099789.  Google Scholar

[21]

R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation,, Journ. Stat. Phys., 78 (1995), 389.  doi: 10.1007/BF02183355.  Google Scholar

[22]

H. Grad, Asymptotic theory of the Boltzmann equation,, Physics of Fluids, 6 (1963), 147.  doi: 10.1063/1.1706716.  Google Scholar

[23]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, (1962), 26.   Google Scholar

[24]

H. Grad, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations,, in, (1965), 154.   Google Scholar

[25]

Y. Sone, "Kinetic Theory and Fluid Dynamics,", Modeling and Simulations in Science, (2002).  doi: 10.1007/978-1-4612-0061-1.  Google Scholar

[26]

Y. Sone, K. Aoki, S. Takata, H. Sugimoto and A. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation,, Physics of Fluids, 8 (1996), 628.  doi: 10.1063/1.869133.  Google Scholar

[27]

Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit,, Phys. Fluids, 16 (2004), 952.  doi: 10.1063/1.1649738.  Google Scholar

[28]

S. Taguchi, K. Aoki and S. Takata, Vapor flows at incidence onto a plane condensed phase in the presence of a non condensable gas. II. Supersonic condensation,, Physics of Fluids, 16 (2004).  doi: 10.1063/1.1630324.  Google Scholar

[29]

S. Takata, Kinetic theory analysis of the two-surface problem of vapor-vapor mixture in the continuum limit,, Physics of Fluids, 16 (2004).  doi: 10.1063/1.1723464.  Google Scholar

[30]

S. Takata and K. Aoki, Two-surface-problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory,, Physics of Fluids, 11 (1999), 2743.  doi: 10.1063/1.870133.  Google Scholar

[31]

S. Takata and K. Aoki, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation,, in, 30 (2001), 205.   Google Scholar

[32]

R. V. Thompson and S. K. Loyalka, Chapman-Enskog solution for diffusion: Pidduck's equation for arbitrary mass ratio,, Physics of Fluids, 30 (1987).  doi: 10.1063/1.866142.  Google Scholar

[1]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[2]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[3]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[4]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055

[7]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[8]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[9]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[12]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[13]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[14]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[15]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[16]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[17]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[19]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]