• Previous Article
    Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension
  • KRM Home
  • This Issue
  • Next Article
    Periodic long-time behaviour for an approximate model of nematic polymers
June  2012, 5(2): 325-355. doi: 10.3934/krm.2012.5.325

The Lifschitz-Slyozov equation with space-diffusion of monomers

1. 

Project COFFEE, INRIA Sophia Antipolis Méditerranée Research Centre, & Labo. J. A. Dieudonné UMR 7351 CNRS{Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France

2. 

Laboratoire de Mathématiques, UMR 8628, CNRS-Université Paris-Sud 11, Bât. 425, Faculté des Sciences d'Orsay, Université Paris-Sud 11, F-91405 Orsay cedex,, France

3. 

Project-Team SIMPAF, INRIA Lille Nord Europe Research Centre, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d'Ascq cedex, France

Received  September 2011 Revised  January 2012 Published  April 2012

The Lifschitz--Slyozov system describes the dynamics of mass exchanges between macro--particles and monomers in the theory of coarsening. We consider a variant of the classical model where monomers are subject to space diffusion. We establish the existence--uniqueness of solutions for a wide class of relevant data and kinetic coefficients. We also derive a numerical scheme to simulate the behavior of the solutions.
Citation: Thierry Goudon, Frédéric Lagoutière, Léon M. Tine. The Lifschitz-Slyozov equation with space-diffusion of monomers. Kinetic & Related Models, 2012, 5 (2) : 325-355. doi: 10.3934/krm.2012.5.325
References:
[1]

H. Brézis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliquées pour la Maîtrise, (1983).

[2]

J. A. Carrillo and T. Goudon, A numerical study on large-time asymptotics of the Lifschitz-Slyozov system,, J. Scient. Comp., 18 (2003), 429.

[3]

L. Châun-Hoàn, "Étude de la Classe des Opérateurs $m-$Accrétifs de $L^1(\Omega)$ et Accrétifs dans $L^\infty(\Omega)$,", Thèse de 3ème cycle, (1977).

[4]

M. K. Chen and P. W. Voorhees, The dynamics of transient Ostwald ripening,, Modelling Simul. Mater. Sci. Eng., 1 (1993), 591. doi: 10.1088/0965-0393/1/5/002.

[5]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).

[6]

J.-F. Collet and T. Goudon, Lifschitz-Slyozov equations: The model with encounters,, Transp. Theory Stat. Phys., 28 (1999), 545. doi: 10.1080/00411459908214517.

[7]

J.-F. Collet and T. Goudon, On solutions of the Lifschitz-Slyozov model,, Nonlinearity, 13 (2000), 1239. doi: 10.1088/0951-7715/13/4/314.

[8]

J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker-Döring system and its Lifschitz-Slyozov limit,, SIAM J. Appl. Math., 62 (2002), 1488. doi: 10.1137/S0036139900378852.

[9]

J.-F. Collet, T. Goudon and A. Vasseur, Some remarks on the large-time asymptotic of the Lifschitz-Slyozov equations,, J. Stat. Phys., 108 (2002), 341. doi: 10.1023/A:1015404021853.

[10]

J. Conlon, On a diffusive version of the Lifschitz-Slyozov-Wagner equation,, J. Nonlinear Sc., 20 (2010), 463. doi: 10.1007/s00332-010-9065-y.

[11]

D. B. Dadyburjor and E. Ruckenstein, Kinetics of Ostwald ripening,, J. Crystal Growth, 40 (1977), 279. doi: 10.1016/0022-0248(77)90017-3.

[12]

C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel," chapitres I à IV,, Édition entièrement refondue, (1372).

[13]

R. Edwards, "Functional Analysis: Theory and Applications," Corrected reprint of the 1965 original,, Dover Publications, (1995).

[14]

T. Goudon, "Intégration: Intégrale de Lebesgue et Introduction à l'Analyse Fonctionnelle,", Ellipses, (2011).

[15]

S. Hariz and J.-F. Collet, A modified version of the Lifschitz-Slyozov model,, Applied Math. Lett., 12 (1999), 81. doi: 10.1016/S0893-9659(98)00138-4.

[16]

M. Herrmann, B. Niethammer and J. J. L. Velázquez, Self-similar solutions for the LSW model with with encounters,, J. Differential Equations, 247 (2009), 2282.

[17]

P. Laurençot, Weak solutions to the Lifschitz-Slyozov-Wagner equation,, Indiana Univ. Math. J., 50 (2001), 1319.

[18]

P. Laurençot, The Lifschitz-Slyozov equation with encounters,, Math. Models Methods Appl. Sci., 11 (2001), 731. doi: 10.1142/S0218202501001070.

[19]

P. Laurençot, The Lifschitz-Slyozov-Wagner equation with conserved total volume,, SIAM J. Math. Anal., 34 (2002), 257. doi: 10.1137/S0036141001387471.

[20]

I. M. Lifschitz and L. Pitaevski, "Cinétique Physique," Cours de Physique Théorique, Vol. 10, L. Landau-I. Lifschitz,, Mir, (1990).

[21]

I. M. Lifschitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions,, J. Phys. Chem. Solids, 19 (1961), 35. doi: 10.1016/0022-3697(61)90054-3.

[22]

B. Niethammer, A scaling limit of the Becker-Döring equations in the regime of small excess density,, J. Nonlinear Sci., 14 (2004), 453. doi: 10.1007/s00332-004-0638-5.

[23]

B. Niethammer and F. Otto, Ostwald ripening: The screening length revisited,, Calc. Var. Partial Differential Equations, 13 (2001), 33.

[24]

B. Niethammer and R. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening,, J. Stat. Phys., 95 (1999), 867. doi: 10.1023/A:1004546215920.

[25]

B. Niethammer and R. Pego, On the initial-value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening,, SIAM J. Math. Anal., 31 (2000), 467. doi: 10.1137/S0036141098338211.

[26]

B. Niethammer and R. Pego, The LSW model for domain coarsening: Asymptotic behavior for conserved total mass,, J. Stat. Phys., 104 (2001), 1113. doi: 10.1023/A:1010405812125.

[27]

B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models,, Indiana Univ. Math. J., 54 (2005), 499. doi: 10.1512/iumj.2005.54.2598.

[28]

B. Niethammer and J. J. L. Velázquez, Global well-posedness for an inhomogeneous LSW-model in unbounded domains,, Math. Ann., 328 (2004), 481. doi: 10.1007/s00208-003-0503-0.

[29]

B. Niethammer and J. J. L. Velázquez, On screening induced fluctuations in Ostwald ripening,, J. Stat. Phys., 130 (2008), 415. doi: 10.1007/s10955-007-9449-z.

[30]

O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening,, J. Stat. Phys., 89 (1997), 305. doi: 10.1007/BF02770767.

[31]

T. Phillips, Trouble with Lifshitz, Slyozov and Wagner, Science News, NASA Science, 2003., Available from: \url{http://www.nasa.gov/vision/earth/technologies/coarsening_prt.htm}., ().

[32]

V. V. Sagalovich and V. V. Slyozov, Diffusive decomposition of solid solutions,, Sov. Phys. Usp., 30 (1987), 23. doi: 10.1070/PU1987v030n01ABEH002792.

[33]

J. Simon, Compact sets in $L^p(0,T;B)$,, Ann. Mat., 146 (1987), 65.

[34]

L. M. Tiné, T. Goudon and F. Lagoutière, Simulations of the Lifschitz-Slyozov equations with coagulations terms: Finite volumes schemes and anti-diffusive strategies,, preprint, (2011).

[35]

F. Trèves, "Topological Vector Spaces, Distributions and Kernels,", Unabridged republication of the 1967 original, (1967).

show all references

References:
[1]

H. Brézis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliquées pour la Maîtrise, (1983).

[2]

J. A. Carrillo and T. Goudon, A numerical study on large-time asymptotics of the Lifschitz-Slyozov system,, J. Scient. Comp., 18 (2003), 429.

[3]

L. Châun-Hoàn, "Étude de la Classe des Opérateurs $m-$Accrétifs de $L^1(\Omega)$ et Accrétifs dans $L^\infty(\Omega)$,", Thèse de 3ème cycle, (1977).

[4]

M. K. Chen and P. W. Voorhees, The dynamics of transient Ostwald ripening,, Modelling Simul. Mater. Sci. Eng., 1 (1993), 591. doi: 10.1088/0965-0393/1/5/002.

[5]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).

[6]

J.-F. Collet and T. Goudon, Lifschitz-Slyozov equations: The model with encounters,, Transp. Theory Stat. Phys., 28 (1999), 545. doi: 10.1080/00411459908214517.

[7]

J.-F. Collet and T. Goudon, On solutions of the Lifschitz-Slyozov model,, Nonlinearity, 13 (2000), 1239. doi: 10.1088/0951-7715/13/4/314.

[8]

J.-F. Collet, T. Goudon, F. Poupaud and A. Vasseur, The Becker-Döring system and its Lifschitz-Slyozov limit,, SIAM J. Appl. Math., 62 (2002), 1488. doi: 10.1137/S0036139900378852.

[9]

J.-F. Collet, T. Goudon and A. Vasseur, Some remarks on the large-time asymptotic of the Lifschitz-Slyozov equations,, J. Stat. Phys., 108 (2002), 341. doi: 10.1023/A:1015404021853.

[10]

J. Conlon, On a diffusive version of the Lifschitz-Slyozov-Wagner equation,, J. Nonlinear Sc., 20 (2010), 463. doi: 10.1007/s00332-010-9065-y.

[11]

D. B. Dadyburjor and E. Ruckenstein, Kinetics of Ostwald ripening,, J. Crystal Growth, 40 (1977), 279. doi: 10.1016/0022-0248(77)90017-3.

[12]

C. Dellacherie and P.-A. Meyer, "Probabilités et Potentiel," chapitres I à IV,, Édition entièrement refondue, (1372).

[13]

R. Edwards, "Functional Analysis: Theory and Applications," Corrected reprint of the 1965 original,, Dover Publications, (1995).

[14]

T. Goudon, "Intégration: Intégrale de Lebesgue et Introduction à l'Analyse Fonctionnelle,", Ellipses, (2011).

[15]

S. Hariz and J.-F. Collet, A modified version of the Lifschitz-Slyozov model,, Applied Math. Lett., 12 (1999), 81. doi: 10.1016/S0893-9659(98)00138-4.

[16]

M. Herrmann, B. Niethammer and J. J. L. Velázquez, Self-similar solutions for the LSW model with with encounters,, J. Differential Equations, 247 (2009), 2282.

[17]

P. Laurençot, Weak solutions to the Lifschitz-Slyozov-Wagner equation,, Indiana Univ. Math. J., 50 (2001), 1319.

[18]

P. Laurençot, The Lifschitz-Slyozov equation with encounters,, Math. Models Methods Appl. Sci., 11 (2001), 731. doi: 10.1142/S0218202501001070.

[19]

P. Laurençot, The Lifschitz-Slyozov-Wagner equation with conserved total volume,, SIAM J. Math. Anal., 34 (2002), 257. doi: 10.1137/S0036141001387471.

[20]

I. M. Lifschitz and L. Pitaevski, "Cinétique Physique," Cours de Physique Théorique, Vol. 10, L. Landau-I. Lifschitz,, Mir, (1990).

[21]

I. M. Lifschitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions,, J. Phys. Chem. Solids, 19 (1961), 35. doi: 10.1016/0022-3697(61)90054-3.

[22]

B. Niethammer, A scaling limit of the Becker-Döring equations in the regime of small excess density,, J. Nonlinear Sci., 14 (2004), 453. doi: 10.1007/s00332-004-0638-5.

[23]

B. Niethammer and F. Otto, Ostwald ripening: The screening length revisited,, Calc. Var. Partial Differential Equations, 13 (2001), 33.

[24]

B. Niethammer and R. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening,, J. Stat. Phys., 95 (1999), 867. doi: 10.1023/A:1004546215920.

[25]

B. Niethammer and R. Pego, On the initial-value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening,, SIAM J. Math. Anal., 31 (2000), 467. doi: 10.1137/S0036141098338211.

[26]

B. Niethammer and R. Pego, The LSW model for domain coarsening: Asymptotic behavior for conserved total mass,, J. Stat. Phys., 104 (2001), 1113. doi: 10.1023/A:1010405812125.

[27]

B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models,, Indiana Univ. Math. J., 54 (2005), 499. doi: 10.1512/iumj.2005.54.2598.

[28]

B. Niethammer and J. J. L. Velázquez, Global well-posedness for an inhomogeneous LSW-model in unbounded domains,, Math. Ann., 328 (2004), 481. doi: 10.1007/s00208-003-0503-0.

[29]

B. Niethammer and J. J. L. Velázquez, On screening induced fluctuations in Ostwald ripening,, J. Stat. Phys., 130 (2008), 415. doi: 10.1007/s10955-007-9449-z.

[30]

O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening,, J. Stat. Phys., 89 (1997), 305. doi: 10.1007/BF02770767.

[31]

T. Phillips, Trouble with Lifshitz, Slyozov and Wagner, Science News, NASA Science, 2003., Available from: \url{http://www.nasa.gov/vision/earth/technologies/coarsening_prt.htm}., ().

[32]

V. V. Sagalovich and V. V. Slyozov, Diffusive decomposition of solid solutions,, Sov. Phys. Usp., 30 (1987), 23. doi: 10.1070/PU1987v030n01ABEH002792.

[33]

J. Simon, Compact sets in $L^p(0,T;B)$,, Ann. Mat., 146 (1987), 65.

[34]

L. M. Tiné, T. Goudon and F. Lagoutière, Simulations of the Lifschitz-Slyozov equations with coagulations terms: Finite volumes schemes and anti-diffusive strategies,, preprint, (2011).

[35]

F. Trèves, "Topological Vector Spaces, Distributions and Kernels,", Unabridged republication of the 1967 original, (1967).

[1]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[2]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[3]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[4]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[5]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[6]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[7]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[8]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[9]

Cheng Zheng. Sparse equidistribution of unipotent orbits in finite-volume quotients of $\text{PSL}(2,\mathbb R)$. Journal of Modern Dynamics, 2016, 10: 1-21. doi: 10.3934/jmd.2016.10.1

[10]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[11]

Phillip Colella. High-order finite-volume methods on locally-structured grids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4247-4270. doi: 10.3934/dcds.2016.36.4247

[12]

Samuel C. Edwards. On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$). Journal of Modern Dynamics, 2017, 11: 155-188. doi: 10.3934/jmd.2017008

[13]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[14]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[15]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[16]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[17]

Guillermo Reyes, Juan-Luis Vázquez. The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1275-1294. doi: 10.3934/cpaa.2008.7.1275

[18]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[19]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[20]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

[Back to Top]