March  2012, 5(1): 97-112. doi: 10.3934/krm.2012.5.97

A smooth 3D model for fiber lay-down in nonwoven production processes

1. 

Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany, Germany

2. 

Fraunhofer ITWM, Kaiserslautern, Germany

Received  March 2011 Revised  August 2011 Published  January 2012

In this paper we develop an improved three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials. The model removes a drawback of a previous 3D model, that is the non-smoothness of the fiber paths. A similar result in the 2D case has been presented in [12]. The resulting equations are investigated for different limit situations and numerical simulations are presented.
Citation: Axel Klar, Johannes Maringer, Raimund Wegener. A smooth 3D model for fiber lay-down in nonwoven production processes. Kinetic & Related Models, 2012, 5 (1) : 97-112. doi: 10.3934/krm.2012.5.97
References:
[1]

W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", Springer, (1978).   Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).   Google Scholar

[4]

L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.  doi: 10.1137/070692728.  Google Scholar

[5]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.  doi: 10.1016/j.jcp.2008.05.002.  Google Scholar

[6]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[7]

J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., ().   Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.   Google Scholar

[9]

T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.  doi: 10.1137/06067715X.  Google Scholar

[10]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.  doi: 10.1142/S021820250500056X.  Google Scholar

[11]

J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.  doi: 10.1080/00405007608630170.  Google Scholar

[12]

M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.  doi: 10.3934/krm.2009.2.489.  Google Scholar

[13]

A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.  doi: 10.1002/zamm.200900282.  Google Scholar

[14]

A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., ().   Google Scholar

[15]

Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004).   Google Scholar

[16]

L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.  doi: 10.1098/rspa.1996.0089.  Google Scholar

[17]

N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.  doi: 10.1137/050637182.  Google Scholar

[18]

N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.  doi: 10.1016/j.ijmultiphaseflow.2010.10.001.  Google Scholar

[19]

E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).   Google Scholar

[20]

M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.  doi: 10.3934/krm.2009.2.363.  Google Scholar

show all references

References:
[1]

W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", Springer, (1978).   Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).   Google Scholar

[4]

L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.  doi: 10.1137/070692728.  Google Scholar

[5]

J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.  doi: 10.1016/j.jcp.2008.05.002.  Google Scholar

[6]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[7]

J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., ().   Google Scholar

[8]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.   Google Scholar

[9]

T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.  doi: 10.1137/06067715X.  Google Scholar

[10]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.  doi: 10.1142/S021820250500056X.  Google Scholar

[11]

J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.  doi: 10.1080/00405007608630170.  Google Scholar

[12]

M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.  doi: 10.3934/krm.2009.2.489.  Google Scholar

[13]

A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.  doi: 10.1002/zamm.200900282.  Google Scholar

[14]

A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., ().   Google Scholar

[15]

Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004).   Google Scholar

[16]

L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.  doi: 10.1098/rspa.1996.0089.  Google Scholar

[17]

N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.  doi: 10.1137/050637182.  Google Scholar

[18]

N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.  doi: 10.1016/j.ijmultiphaseflow.2010.10.001.  Google Scholar

[19]

E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).   Google Scholar

[20]

M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.  doi: 10.3934/krm.2009.2.363.  Google Scholar

[1]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[4]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[5]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[12]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[13]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[14]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[19]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[20]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]