-
Previous Article
Estimates of solutions of linear neutron transport equation at large time and spectral singularities
- KRM Home
- This Issue
-
Next Article
On a chemotaxis model with saturated chemotactic flux
A smooth 3D model for fiber lay-down in nonwoven production processes
1. | Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany, Germany |
2. | Fraunhofer ITWM, Kaiserslautern, Germany |
References:
[1] |
W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003). Google Scholar |
[2] |
L. Arnold, "Stochastic Differential Equations,", Springer, (1978). Google Scholar |
[3] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).
|
[4] |
L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.
doi: 10.1137/070692728. |
[5] |
J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.
doi: 10.1016/j.jcp.2008.05.002. |
[6] |
P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.
doi: 10.1007/s10955-008-9529-8. |
[7] |
J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., (). Google Scholar |
[8] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.
|
[9] |
T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.
doi: 10.1137/06067715X. |
[10] |
T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.
doi: 10.1142/S021820250500056X. |
[11] |
J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.
doi: 10.1080/00405007608630170. |
[12] |
M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.
doi: 10.3934/krm.2009.2.489. |
[13] |
A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.
doi: 10.1002/zamm.200900282. |
[14] |
A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., (). Google Scholar |
[15] |
Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004). Google Scholar |
[16] |
L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.
doi: 10.1098/rspa.1996.0089. |
[17] |
N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.
doi: 10.1137/050637182. |
[18] |
N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.
doi: 10.1016/j.ijmultiphaseflow.2010.10.001. |
[19] |
E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).
|
[20] |
M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.
doi: 10.3934/krm.2009.2.363. |
show all references
References:
[1] |
W. Albrecht, H. Fuchs and W. Kittelmann, "Nonwoven Fabrics,", Wiley, (2003). Google Scholar |
[2] |
L. Arnold, "Stochastic Differential Equations,", Springer, (1978). Google Scholar |
[3] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978).
|
[4] |
L. Bonilla and T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes,, SIAM J. Appl. Math., 68 (): 648.
doi: 10.1137/070692728. |
[5] |
J.-A. Carrillo, T. Goudon and P. Lafitte, Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes,, J. Comp. Phys., 227 (2008), 7929.
doi: 10.1016/j.jcp.2008.05.002. |
[6] |
P. Degond and S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,, J. Stat. Phys., 131 (2008), 989.
doi: 10.1007/s10955-008-9529-8. |
[7] |
J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down,, preprint., (). Google Scholar |
[8] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms,, C. R. Acad. Sci. Paris, 347 (2009), 511.
|
[9] |
T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes,, SIAM J. Appl. Math., 67 (2007), 1704.
doi: 10.1137/06067715X. |
[10] |
T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case,, Math. Models Methods Appl. Sci., 15 (2005), 737.
doi: 10.1142/S021820250500056X. |
[11] |
J. W. Hearle, M. A. Sultan and S. Govender, The form taken by threads laid on a moving belt, Part I-III,, Journal of the Textile Institute, 67 (1976), 373.
doi: 10.1080/00405007608630170. |
[12] |
M. Herty, A. Klar, S. Motsch and F. Olawsky, A smooth model for fiber lay-down processes and its diffusion approximations,, KRM, 2 (2009), 489.
doi: 10.3934/krm.2009.2.489. |
[13] |
A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles,, ZAMM Z. Angew. Math. Mech., 89 (2009), 941.
doi: 10.1002/zamm.200900282. |
[14] |
A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes,, to appear in MMMAS., (). Google Scholar |
[15] |
Y. Kutoyantz, "Statistical Inference for Ergodic Diffusion Processes,", Springer, (2004). Google Scholar |
[16] |
L. Mahadevan and J. B. Keller, Coiling of flexible ropes,, Proc. R. Soc. Lond. Ser. A, 452 (1996), 1679.
doi: 10.1098/rspa.1996.0089. |
[17] |
N. Marheineke and R. Wegener, Fiber dynamics in turbulent flows: General modeling framework,, SIAM J. Appl. Math., 66 (2006), 1703.
doi: 10.1137/050637182. |
[18] |
N. Marheineke and R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows,, International Journal of Multiphase Flow, 37 (2011), 136.
doi: 10.1016/j.ijmultiphaseflow.2010.10.001. |
[19] |
E. Nelson, "Dynamical Theories of Brownian Motion,", Princeton University Press, (1967).
|
[20] |
M. R. D'Orsogna, V. Panferov and J. A. Carrillo, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.
doi: 10.3934/krm.2009.2.363. |
[1] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[2] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[3] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[4] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[5] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[6] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[7] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[8] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[9] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[10] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[11] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[12] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[13] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[14] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[15] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[16] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[17] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[18] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[19] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[20] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]