March  2013, 6(1): 137-157. doi: 10.3934/krm.2013.6.137

Diffusion asymptotics of a kinetic model for gaseous mixtures

1. 

UPMC Univ Paris 06, UMR 7598 LJLL, Paris, F-75005

2. 

MAP5, CNRS UMR 8145, Université Paris Descartes, Sorbonne Paris Cité, 45 Rue des Saints Pères, F-75006 Paris, France

3. 

CMLA, ENS Cachan, PRES UniverSud Paris, 61 Avenue du Président Wilson, F-94235 Cachan Cedex, France

4. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1 - 27100 Pavia

Received  July 2012 Revised  October 2012 Published  December 2012

In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.
Citation: Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137
References:
[1]

C. Bardos, F. Golse and C. D. Levermore, Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles,, C. R. Acad. Sci. Paris Sér. I Math., 309 (1989), 727.   Google Scholar

[2]

C. Bardos, F. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations,, J. Statist. Phys., 63 (1991), 323.   Google Scholar

[3]

C. Bardos, F. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation,, Comm. Pure Appl. Math., 46 (1993), 667.   Google Scholar

[4]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations,, J. Statist. Phys., 101 (2000), 1087.   Google Scholar

[5]

M. Bennoune, M. Lemou and L. Mieussens, An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit,, Contin. Mech. Thermodyn., 21 (2009), 401.   Google Scholar

[6]

M. Bisi and L. Desvillettes, Incompressible Navier-Stokes equations from kinetic models for a mixture of rarefied gases,, Work in progress., ().   Google Scholar

[7]

L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures,, Submitted., ().   Google Scholar

[8]

J.-F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann's theorem,, European J. Mech. B Fluids, 13 (1994), 237.   Google Scholar

[9]

C. Cercignani, "The Boltzmann Equation and Its Applications,", volume 67 of Applied Mathematical Sciences. Springer-Verlag, (1988).   Google Scholar

[10]

S. Chapman and T. G. Cowling, "The mathematical Theory of Nonuniform Gases,", Cambridge Mathematical Library. Cambridge University Press, (1990).   Google Scholar

[11]

P. Degond, Macroscopic limits of the Boltzmann equation: A review,, in, (2004), 3.   Google Scholar

[12]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Eur. J. Mech. B Fluids, 24 (2005), 219.   Google Scholar

[13]

C. Dogbe, Fluid dynamic limits for gas mixture. I. Formal derivations,, Math. Models Methods Appl. Sci., 18 (2008), 1633.   Google Scholar

[14]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion,, AIChE Journal, 8 (1962), 38.   Google Scholar

[15]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels,, Invent. Math., 155 (2004), 81.   Google Scholar

[16]

F. Golse and L. Saint-Raymond, The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials,, J. Math. Pures Appl. (9), 91 (2009), 508.   Google Scholar

[17]

H. Grad, Asymptotic theory of the Boltzmann equation,, Phys. Fluids, 6 (1963), 147.   Google Scholar

[18]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, I (1963), 26.   Google Scholar

[19]

D. E. Greene, Mathematical aspects of kinetic model equations for binary gas mixtures,, J. Mathematical Phys., 16 (1975), 776.   Google Scholar

[20]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.   Google Scholar

[21]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity,, Kinet. Relat. Models, 3 (2010), 685.   Google Scholar

[22]

F. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities,, Comm. Math. Phys., 295 (2010), 293.   Google Scholar

[23]

S. Jin and Q. Li, A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation,, Technical report, (2012).   Google Scholar

[24]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chem. Eng. Sci., 52 (1997), 861.   Google Scholar

[25]

P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II,, Arch. Ration. Mech. Anal., 158 (2001), 173.   Google Scholar

[26]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc., 157 (1866), 49.   Google Scholar

[27]

T. F. Morse, Kinetic model equations for a gas mixture,, Phys. Fluids, 7 (1964), 2012.   Google Scholar

[28]

J. Ross and P. Mazur, Some deductions from a formal statistical mechanical theory of chemical kinetics,, J. Chem. Phys., 35 (1961), 19.   Google Scholar

[29]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Phys. A, 272 (1999), 563.   Google Scholar

[30]

L. Sirovich, Kinetic modeling of gas mixtures,, Phys. Fluids, 5 (1962), 908.   Google Scholar

[31]

J. Stefan, Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,, Akad. Wiss. Wien, 63 (1871), 63.   Google Scholar

[32]

S.-H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equation,, Comm. Pure Appl. Math., 58 (2005), 409.   Google Scholar

show all references

References:
[1]

C. Bardos, F. Golse and C. D. Levermore, Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles,, C. R. Acad. Sci. Paris Sér. I Math., 309 (1989), 727.   Google Scholar

[2]

C. Bardos, F. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations,, J. Statist. Phys., 63 (1991), 323.   Google Scholar

[3]

C. Bardos, F. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation,, Comm. Pure Appl. Math., 46 (1993), 667.   Google Scholar

[4]

S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations,, J. Statist. Phys., 101 (2000), 1087.   Google Scholar

[5]

M. Bennoune, M. Lemou and L. Mieussens, An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit,, Contin. Mech. Thermodyn., 21 (2009), 401.   Google Scholar

[6]

M. Bisi and L. Desvillettes, Incompressible Navier-Stokes equations from kinetic models for a mixture of rarefied gases,, Work in progress., ().   Google Scholar

[7]

L. Boudin, B. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures,, Submitted., ().   Google Scholar

[8]

J.-F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann's theorem,, European J. Mech. B Fluids, 13 (1994), 237.   Google Scholar

[9]

C. Cercignani, "The Boltzmann Equation and Its Applications,", volume 67 of Applied Mathematical Sciences. Springer-Verlag, (1988).   Google Scholar

[10]

S. Chapman and T. G. Cowling, "The mathematical Theory of Nonuniform Gases,", Cambridge Mathematical Library. Cambridge University Press, (1990).   Google Scholar

[11]

P. Degond, Macroscopic limits of the Boltzmann equation: A review,, in, (2004), 3.   Google Scholar

[12]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Eur. J. Mech. B Fluids, 24 (2005), 219.   Google Scholar

[13]

C. Dogbe, Fluid dynamic limits for gas mixture. I. Formal derivations,, Math. Models Methods Appl. Sci., 18 (2008), 1633.   Google Scholar

[14]

J. B. Duncan and H. L. Toor, An experimental study of three component gas diffusion,, AIChE Journal, 8 (1962), 38.   Google Scholar

[15]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels,, Invent. Math., 155 (2004), 81.   Google Scholar

[16]

F. Golse and L. Saint-Raymond, The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials,, J. Math. Pures Appl. (9), 91 (2009), 508.   Google Scholar

[17]

H. Grad, Asymptotic theory of the Boltzmann equation,, Phys. Fluids, 6 (1963), 147.   Google Scholar

[18]

H. Grad, Asymptotic theory of the Boltzmann equation. II,, in, I (1963), 26.   Google Scholar

[19]

D. E. Greene, Mathematical aspects of kinetic model equations for binary gas mixtures,, J. Mathematical Phys., 16 (1975), 776.   Google Scholar

[20]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.   Google Scholar

[21]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity,, Kinet. Relat. Models, 3 (2010), 685.   Google Scholar

[22]

F. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities,, Comm. Math. Phys., 295 (2010), 293.   Google Scholar

[23]

S. Jin and Q. Li, A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation,, Technical report, (2012).   Google Scholar

[24]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chem. Eng. Sci., 52 (1997), 861.   Google Scholar

[25]

P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II,, Arch. Ration. Mech. Anal., 158 (2001), 173.   Google Scholar

[26]

J. C. Maxwell, On the dynamical theory of gases,, Phil. Trans. R. Soc., 157 (1866), 49.   Google Scholar

[27]

T. F. Morse, Kinetic model equations for a gas mixture,, Phys. Fluids, 7 (1964), 2012.   Google Scholar

[28]

J. Ross and P. Mazur, Some deductions from a formal statistical mechanical theory of chemical kinetics,, J. Chem. Phys., 35 (1961), 19.   Google Scholar

[29]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Phys. A, 272 (1999), 563.   Google Scholar

[30]

L. Sirovich, Kinetic modeling of gas mixtures,, Phys. Fluids, 5 (1962), 908.   Google Scholar

[31]

J. Stefan, Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,, Akad. Wiss. Wien, 63 (1871), 63.   Google Scholar

[32]

S.-H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equation,, Comm. Pure Appl. Math., 58 (2005), 409.   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[13]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (19)

[Back to Top]